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Abstract

The KILLING package is a set of algebraic computational procedures to manipulate elements of representation theory for
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classify all semisimple Lie algebras and their irreducible representations, and (2) The Gelfand–Tsetlin method to construct
explicitly the irreducible representations of classical Lie algebras, including the deformed unitary Lie algebras. 2000 Elsevier
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Nature of the physical problem
Symmetry has been a very important fundamental principle under-
lying human knowledge about our physical world. Among several
mathematical formulations of symmetry, the Lie algebras and their
corresponding Lie groups are probably the ones most explored.
They were discovered by Sophus Lie and Wilhelm Killing during
the last two decades of the 19th century. Lie’s work on Lie groups
was inspired by Galois’ work in 1832 in which he discovered the
finite groups. Independently, Killing had started a classification of
Lie groups which was the starting point to the Élie Cartan’s doctoral
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Method of solution
In spite of the high level of knowledge about the representation the-
ory of semisimple Lie algebras, the manipulation of elements such
as roots, weights and matrices is very difficult for the non-trivial
cases. The goal in writing this package is to make possible the han-
dling of several elements of the theory of representation of Lie alge-
bras in a very convenient way in which the user can easily modify
and augment every code. A great deal of flexibility is achieved by
choosing the algebraic programming scenario in which huge sets of
weights and complicated algebraic matrix elements can be handled
in an interactive way.

Restrictions on the complexity of the problem
Until now, the Gelfand–Tsetlin method has been restricted to classi-
cal orthogonal algebras, and to classical and deformed unitary alge-
bras, and to the classical symplectic algebra of rank two.

Typical running time
Under one minute for each procedure except for the multiplicities
determination procedures.
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1. Introduction

Symmetry has been a very important fundamental principle underlying human knowledge about our physical
world. Among several mathematical formulations of symmetry, the Lie algebras and their corresponding Lie groups
are probably the ones most explored [1–5]. They were discovered by Sophus Lie and Wilhelm Killing during the
last two decades of the 19th century. Lie’s work on Lie groups was inspired by Galois’ work in 1832 in which
he discovered the finite groups. Independently, Killing had started a classification of Lie groups, which was the
starting point for Élie Cartan’s doctoral thesis at the beginning of the 20th century [6]. Cartan was able to make a
complete classification of Lie groups. Since Cartan’s classification, the theory of Lie groups has been utilized in
many branches of physics, including molecular physics [7–9], atomic physics [10], nuclear physics [11,8], particle
physics [12,13], dynamical systems [14–16] and molecular genetics [17–19].

In regard to physical applications, roots and weights play a special role in the classification of the Lie algebras
and their irreducible representations, respectively. The typical use of representations in physics can be summarized
as follows [20]. In general, each vector in an irreducible representation of a Lie algebra is identified by one set of
weight vectors. When the physically observable operators of a given physical quantum system can be constructed
from the elements of the algebra, the components of the weight vectors can be identified with the physical quantum
numbers.

Therefore, one very important task is to know how to write the matrix elements of all elements in a given algebra
explicitly in terms of the components of the weight vectors in a given irreducible representation. While there is a
general program to calculate roots and weights for all semisimple Lie algebras [2,5], there are only partial methods
to obtain the matrix elements. One very important method is the Gelfand–Tsetlin method for orthogonal [21,4] and
unitary [22,4] Lie algebras. Unfortunately, there is not an equivalent method for the exceptional and symplectic
algebras in general [23,24].

In spite of the high level of knowledge about the representation theory of semisimple Lie algebras, the
manipulation of elements such as roots, weights and matrix elements by hand is very difficult for non-trivial cases.
The goal in writing the KILLING package is to make possible the handling of several elements of the theory of
representation of Lie algebras in a convenient way. This package is intended to be helpful to students, teachers and
researchers using Lie algebras. It grew out of several algebraic routines developed at The Institute of Physics of São
Carlos, University of São Paulo, as computational tools to understand and apply Lie algebras in physical systems.
Now, the first part of the KILLING package (Roots & Weights Formalism) covers the analytical results in the first
15 chapters of Wybourne’s book [2], the first chapter of Barut and Raczka’s book [4], and Chapter 5 of Chen’s [5]
book on which some of the codes are based. The second part, the Gelfand–Tsetlin method, covers Chapters 9–10
of Barut and Raczka’s book [4] on which the other codes are based.
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The KILLING package is an extension and a complement to the existing packages written in Maple V [25]
(www.maplesoft.com ) and Mathematica [26] (www.wolfram.com ) symbolic languages. The following
Maple V packages, Coxeter/Weyl by John R. Stembridge, and Crystal by David Joyner, Roland Martin and Michael
Foute, and Dynkin by David Joyner, all described in the Maple V share library, can be used to compute roots and
weights (including multiplicities), to draw Dynkin diagrams, to plot weight systems and to write the structure
constants and the defining matrices. They also can be used to decompose the tensor product of fundamental
irreducible representations. General algebraic properties of the theory of representation of Lie groups can be
handled by routines written by Feinsilver and Schott [27].

The GAP algebraic language is an important free software devoted to group theory in general. It is maintained by
The GAP Group at Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule Aachen (LDFM/
RWTHA), Germany (www.math.rwth-aachen.de/~gap/ ), and by The School of Mathematical and Com-
putational Sciences, University of St. Andrews, Scotland (www-history.mcs.st-and.ac.uk/~gap/ ).
It has a set of routines dedicated to algebraic properties of Lie algebras. There are also two other packages
which extend the capabilities of the GAP functions on Lie algebras: (1) the LAG package by Richard Ross-
manith, documented in the GAP share library; and (2) the CHEVIE package developed at LDFM/RWTHA
(www.math.rwth-aachen.de/ldfm/homes/chevie/ ). The Chevie package also has a Maple V version
dedicated to the construction of character tables. These GAP routines can also be used to compute roots and weights
and character tables.

There are at least four other interactive systems written specially to perform computations on analytical
results in the theory of representations of Lie algebras. There is the Symmetrica package developed at
The Mathematics Department, University of Bayreuth, Germany (www.math2.uni-bayreuth.de ). It is
a collection of C routines which can be used as basic structures for more specific programs. The SimpLie
software (www.crm.umontreal.ca/~rand/simplie ) by Moody, Patera [28,29] and Rand [30] and the
LiE software by van Leeuwen [31] (wallis.univ-poiliers.fr/~maavl/lie/ ) can be used to compute
branching rules, weight multiplicities and tensor product decompositions very efficiently. The LiE software
is also an algebraic software. They are free softwares. The commercial software Schur, by Wybourne [32]
(www.phys.uni-torun.pl/~bgw/schur ), adds the properties of symmetric functions to the capabilities
of the former packages.

The KILLING package brings most of the analytical capabilities of the existing packages concerning roots and
weights to Maple V and Mathematica users. It also adds some enhancements or complements to the roots and
weights formalism by allowing basis exchanges in the weight space [5], and it adds the explicit construction of
irreducible matrices through the Gelfand–Tsetlin method [4].

2. Elements of the representation theory of Lie algebras

Although the theory of Lie algebras is well explained in many excellent text books, we reproduce here a few
definitions and theorems concerning the representation theory in order to make it a readable text. Refs. [1–5] can
be used for further information. The classification of Lie algebras and their irreducible representations is presented
in Section 2.1 and the explicit construction of the irreducible matrices is presented in Section 2.2.

2.1. Roots and weights

We recall a non-associative algebra as just a vector spaceL in which the bilinear composition (internal product)
xy ≡ [x, y] → z, x, y, z ∈ L, can be defined. A Lie algebra is a non-associative algebraL in which the internal
product (or Lie product) satisfies

[x, y] = −[y, x], (1)[
x, [y, z]]+ [z, [x, y]]+ [y, [z, x]]= 0, (2)
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wherex, y, z ∈ L. The last condition is known as Jacobi identity. The Lie product can assume more than one form.
For example, when the elementsx, y of L can be represented by matrices then the Lie product can be defined as
the usual commutator[x, y] = xy − yx.

An algebra is said to be Abelian if (symbolically)[L,L] = 0. A subspaceI of L is an ideal ofL if
[L,I ] ⊆ I . An ideal is an invariant subspace. An algebraL is solvable ifL(n) = 0 for some integern in the
seriesL = L(0) ⊇ L(1) ⊇ L(2) ⊇ · · · whereL(k) = [L(k−1),L(k−1)]. Each new subalgebraL(k) is an ideal ofL.
A radical ofL is the solvable ideal of maximum dimensionality ofL. If L has no non-zero radical, then it is called
semisimple. When the non-Abelian algebraL has no ideals, besides 0 andL itself, it is called simple. There is a
complete classification for all semisimple and simple Lie algebras as well for their irreducible representations.

In general, a finite Lie algebraL can be defined by giving all commutation relations among the elements of a
chosen basisxi :

[xi, xj ] = cijkxk, (3)

where the numberscijk are known as the structure constants. A canonical form for the commutation relations and
matrices representing the elements of a Lie algebra, that is, matrices satisfying the defining commutation relations,
can be found. The possibility of determining these matrices means that a vector space with a finite basis and a set of
linear operators acting on it, representing the abstract elements of a Lie algebra, can always be found. The simplest
example is given when the elementsX andY of a Lie algebra can simultaneously be seen as vectors in an abstract
vector space and as the linear operators acting on it. The action of an operatorX in a vectorY is defined by

XY ≡ [X,Y ]. (4)

This particular representation is called the adjoint representation. It is irreducible, that is, there is no linear
transformation that can simultaneously bring all matrices in this representation to a block diagonal form (there
is no invariant subspace). From the adjoint representation, it can be shown that a canonical form (the Cartan–Weyl
canonical form) for the commutation relations can be written as follows:

[Hi,Hj ] = 0,

[Hi,Eαj ] = (αj )iEαj ,
[Eαi ,E−αi ] =

r∑
k=1

(αi)kHk,

[Eα,Eβ ] =NαβEα+β,

(5)

where

Nαβ =
{0 if β =−α,

0 if α + β /∈Σ,
±{q(p+ 1)/Nα}1/2 α + β ∈Σ,

Nα = 2

|α|2 ,
p =m, m > 0, β −mα ∈Σ, β − (m+ 1)α /∈Σ,
q =m, m> 0, β +mα ∈Σ, β + (m+ 1)α /∈Σ,

(6)

The numbers(αi)k are the eigenvalues of the operatorsHk, as it can be seen from (4) and (5). These numbers
form anr-dimensional vectorα = [(α)1, . . . , (α)r ] called a root or a weight of the adjoint representation, and they
form a vector space called root space. The notationα = [(α)1, . . . , (α)r ] using square brackets is called Cartan–
Weyl labeling, and the rootα is said to be in the Fundamental Weight System (FWS) basis. The geometrical
meaning of the FWS basis will be clear later in this subsection. Since the roots label the eigenvectors of the adjoint
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representation, one root corresponds to each element in the algebra. The Abelian algebra formed by the elements
Hi , corresponding to the null roots, is called Cartan subalgebra. There are onlyr null roots and they are only
associated with the operatorsHi . The set of all roots is called root systemΣ , and each Lie algebra has its own
root system. Two algebras with the same root system are said to be isomorphics. The dimension of the adjoint
representation is the dimension of the algebra itself, and the degeneracy of degreer of the null root is the rank of
the algebra.

In the commutation relations (5), there are onlyr linearly independent roots (αi ) called simple rootsΠ . They
spawn a root space of dimensionr. This natural basis is called Simple Root System (SRS) basis. An arbitrary root
α in the SRS basis is denoted by using braces:α = {(α)1, . . . , (α)r }. The root space is very restrictive. For example,
(1) There are only roots of two lengths; (2) The multiples of a rootα are only±α; (3) The angles between two
arbitrary roots are only 90◦, 120◦, 135◦, 150◦, or 180◦. One root is said to be positive (negative) if its first non-zero
component is positive (negative) in some given basis. The set of all positive roots is denoted byΣ+.

Another useful canonical form for the commutation relations of Lie algebras is the Chevalley form. It can be
written as follows:

[hi, hk] = 0, i 6 k 6 r,
[hi, ek] = +Aikek,
[hi, fk] = −Aikfk,
[ei, fk] = δikhi ,
[eα, eβ ] = ±(p+ 1)eα+β,

p =m, m > 0, β −mα ∈Σ, β − (m+ 1)α /∈Σ,

(7)

whereA is the Cartan matrix whose elements are

Aij ≡Niαi · αj , Ni = 2

|αi |2 , i 6 j 6 r, (8)

andαi · αj is the scalar product. From (7) and (8), we have another basis for the root space: the Dynkin (DYN)
basis. The component(α)i of an arbitrary rootα in the DYN basis is given by

(α)i ≡Niαi · α, Ni = 2

|αi |2 , (9)

where αi is a simple root. An arbitrary rootα in the DYN basis is denoted by using parentheses:α =
((α)1, . . . , (α)r ). In particular, the simple roots are the columns of the Cartan matrix. The geometrical meaning
of the DYN basis will be clear later in this subsection. The half sum of the positive roots (Weyl vector) in the DYN
basis, for every Lie algebra, is:

ρ =
∑
α>0

α = (1,1, . . . ,1). (10)

Every Lie algebra can be defined by its Cartan matrix or by its Dynkin diagrams, which can be constructed from
the Cartan matrix and vice-versa. The Dynkin diagrams constitute a useful graphical way to classify simple Lie
algebras. In a Dynkin diagram, each pair of simple roots making angles of 90◦, 120◦, 135◦ or 150◦ are joined by 0,
1, 2, and 3 straight lines, respectively. The number of lines joining the simple rootsαi andαj in the Cartan matrix
A is given by

number of lines=AijAji . (11)

Esmerindo Bernardes
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There are only two lengths for roots: the longer ones (represented by open circles) are double the length of the
shorter ones (filled circles). The ratio between their lengths is given by

|αi |2
|αj |2 =

Aji

Aij
. (12)

The Dynkin diagrams play a special role in the classification of all possible finite Lie algebras. There are four major
families of rankr finite complex simple Lie algebras. They are denoted byAr , of dimension(r + 1)2− 1; Br , of
dimensionr(2r + 1); Cr , of dimensionr(2r + 1); andDr , of dimensionr(2r − 1). Besides these four types, there
are only five other (exceptional) finite complex simple Lie algebras:F4, of dimension 52;E6, of dimension 78;
E7, of dimension 133;E8, of dimension 248; andG2 of dimension 14. TheAr algebra is isomorphic to the
complex algebra of then × n traceless matrices,sl(n,C), n = r + 1. Two well-known (real) subalgebras are
sl(n,R) and the special unitary algebrasu(n) consisting of anti-Hermitian traceless matrices. TheBr andDr
algebras are isomorphics to the complex algebra formed by anti-symmetric traceless matrices of order 2r + 1 and
2r, so(2r + 1,C) andso(2r,C), respectively. They are called orthogonal algebras. TheCr algebra is isomorphic
to the complex symplectic algebrasp(2r,C).

The basic ideas from the adjoint representation can be generalized in order to classify the irreducible
representations. Suppose|λ〉 are vectors of an arbitrary irreducible representation. Then they can be labeled by
the eigenvaluesλi of the commuting elementsHi of the Cartan subalgebra:

Hi |λ〉 = λi |λ〉, i 6 r. (13)

The eigenvaluesλi are the components of a vectorλ, called the weight vector, corresponding to the eigenvector
|λ〉. At least one weight corresponds to each vector of the representation. The non-degenerate weights are called
simple. The positiveness (negativeness) of a weight is defined in the same way it was defined for roots. A weight
λ1 is said to be higher thanλ2, whenλ1 − λ2 is positive. There is one, and only one, simple highest weight for
each irreducible representation. This means that two irreducible representations with the same highest weights are
isomorphic. The components of a highest weight in the DYN basis are all non-negative integers. Weights can also
be used to give the general shape of the matrices of an arbitrary irreducible representation. Let1(Λ) denote the
system of weightsλ of an irreducible representation given by the simple highest weightΛ. Then,

Eα|λ〉 ∝ |λ+ α〉, if λ+ α ∈1(Λ),
Eα|λ〉 = 0, if λ+ α /∈1(Λ),

(14)

whereα is a root. The elementsEα are known as step (or ladder) operators. Weights, as roots, spawn anr-
dimensional vector space. The same three bases for roots can be used for weights. The DYN basis is formed by
the basic irreducible representationsM1 = (1,0, . . . ,0), . . . ,Mr = (0,0, . . . ,1). It is non-orthogonal and dual to
the SRS basis. The DYN and SRS bases can be defined for all classical and exceptional Lie algebras. The FWS
basis is formed by the positive weights of the defining fundamental representation (the lowest-dimensional basic
irreducible representation). It is orthonormal for the classicalA–D algebras and unique for the classicalB–D
algebras. The exchange of bases among the DYN, SRS and FWS bases can be summarized as follows [5, Ch. 5]:

(u)DYN =A {v}SRS, (15)

(u)DYN =W [v]FWS, (16)

[u]FWS=R {v}SRS, (17)

whereA are the Cartan matrices, whose columns are the simple roots in the DYN basis;W are the weights matrices,
whose columns are the positive weights of the fundamental representation in the DYN basis; andR are the root
matrices, whose columns are the simple roots in the FWS basis. While the Cartan matrices are unique for any Lie
algebra, the weight and root matrices are not unique for the exceptional algebras [33] andAr algebras [5, Ch. 5].
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The FWS basis forAr deserves some comment [5, Ch. 5]. The componentsvi of any weightv in the FWS basis
for Ar algebras are not linearly independent and they can be negative integers or fractions. This means that there
are more vectors among the weightsλi of the fundamental representationM1 than necessary. In fact, there are
r + 1 vectorsλi . The usual condition to ensure uniqueness of the FWS basis is

r+1∑
i=1

λi = 0. (18)

Therefore we have another basis for the weights ofAr algebras: the modified-FWS basis, or FWS′, whose basis
vectors areλ1, . . . , λr . The components in these two bases are related by:

vFWS′
i = vFWS

i − vFWS
r+1 . (19)

The transformation relations for the DYN and SRS bases are [5, Ch. 5]:

(u)DYN =W ′[v]FWS′, W ′ =WCr , (20)

{u}SRS=R′−1[v]FWS′, R′−1=R−1W ′. (21)

An equivalence relation can be defined for weights in such a way to be useful in determining the weight
multiplicities. Two weightsλ1 andλ2 are said to be equivalents if

λ2= λ1−Nα (λ1 · α)α, Nα = 2

|α|2 , (22)

whereα is an arbitrary root. The weightλ2 is the image of the weightλ1 with respect to the (Weyl) reflection
plane perpendicular the rootα through the origin. The set of Weyl reflections associated with the simple roots
forms a finite group called the Weyl or Weyl–Coxeter reflection group. Equivalent weights belong to the same
representation and have the same multiplicity. The highest weight in a set of equivalent weights is called the
dominant weight.

Another interesting feature of weights is that they can be grouped into layers. Letλ be a weight of the
representationΛ, then the layer indexL(λ) of λ is

L(λ)= 1
2

[
δ(Λ)− δ(λ)], (23)

whereδ(λ) is the power (or level) ofλ

δ(λ)= 2
r∑
i=1

{λ}i , (24)

and {λ}i represents the components ofλ in the SRS basis. The number of layers is called the height of the
representation, and it is given byδ(Λ) + 1. The layer indexL(λ) represents the number of simple roots that
have to be subtracted from the highest weightΛ in order to haveλ.

The multiplicityηλ of a weightλ in a representationΛ can be calculated recursively by the Freudenthal formula:

(CΛ −Cλ)ηλ = 2
∑
α>0

∑
k=1,2,...

(λ+ kα) · αηλ+kα, (25)

where

Cλ = λ · (λ+ 2ρ). (26)

In (25) the sum ink stops whenλ+ kα >Λ. Despite a numerical factor,CΛ is the eigenvalue of the second order
invariant operators or the Casimir operators.
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The dimension of an irreducible representationΛ can be calculated by the Weyl formula:

dim(Λ)=
∑
α>0

α · (Λ+ ρ)
α · ρ , (27)

whereα is a positive root andρ is the Weyl vector (half the sum of the positive roots) given in (10).

2.2. Irreducible matrices

While the roots and weights formalism is a powerful tool to classify Lie algebras and their irreducible
representations, it does not provide us enough information to perform the explicit construction of the irreducible
matrices. Theorem (14), for example, tells us when the matrix elements must be zero (selection rules), but it does
not tell us about the value of the non-zero matrix elements. This means that we have to look for the weight systems
of the subalgebrasLi of a Lie algebraL, L ⊃ L1 ⊃ L2 ⊃ · · · , in order to complete the information needed to
construct the irreducible matrices ofL.

One very important problem is to know how to compute the weight systems of the irreducible representations
of the subalgebrasLi from the highest weight of an arbitrary irreducible representation ofL. The solution to
this problem is known as the branching rules. In general, an irreducible representation of a given subalgebra can
be degenerate, that is, it can be present several times in an irreducible representation ofL. When the irreducible
representations of all subalgebrasLi in a given chainL ⊃ L1 ⊃ L2 ⊃ · · · have no degeneracy, that is, they are
multiplicity free, the chain is said to be canonical. The chainsAr ⊃Ar−1⊃ · · · andBr ⊃Dr ⊃ Br−1⊃Dr−1⊃ · · ·
are canonical chains and their branching rules are known analytically [4]. For the symplectic algebras, the branching
rules for the non-canonical chainCr ⊃ Cr−1⊕C1⊃ · · · are known analytically [34]. The branching rules for many
other chains can be found numerically [28,30].

In general, each Lie algebra of rankr hasr invariant operators. These operators commute with any element of the
algebra. They are polynomials in the elements of the algebra and, therefore, they do not belong to the algebra itself.
Their eigenvalues can be calculated from the highest weight components of an arbitrary irreducible representation
for any Lie algebra. The physical meaning of these invariants is that the observables in a quantum system can be
functions of invariants. In that way, physical quantum numbers can be made to correspond with weights [20].

2.2.1. The Gelfand–Tsetlin method
We reproduce here the basic results from the Gelfand–Tsetlin formalism for unitary and orthogonal algebras [4,

Chs. 9–10] as well partial results for symplectic algebras [34,24].

Unitary algebras
Let gl(n,R) be the general (linear) Lie algebra formed by all matrices of ordern. This algebra can be

decomposed asgl(n,R) = I ⊕ sl(n,R), whereI is the Abelian algebra formed by the matrices proportional to
the identity andsl(n,R) is the (special linear) Lie algebra formed by the traceless matrices. The special linear
algebrasl(n,R) and the special unitary algebrasu(n) are both real forms ofAr, n = r + 1. One important fact
to be used in the construction of the matrix elements for the unitary algebras is that one arbitrary irreducible
representation ofgl(n,R) induces one irreducible representation ofsl(n,R) andsu(n).

Then defining matrices ofgl(n) are given by the Weyl matricesAij :

(Aij )kl = δikδjl, (Aij )
t =Aji. (28)

They obey the following commutation relation:

[Aij ,Akl] = δjkAil − δilAkj . (29)

The commutingAii matrices are associated with the null roots, and the matricesAij (Aji) with j > i are associated
with the positive (negative) roots. In general, because of

Ak−hk = [Ak−hk−1,Ak−1k], (30)

we do not need to construct the matrix elements of all non-diagonal elementsAij , but forAi i+1 only.
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The algebrasl(n,R) can be formed byAij , Aji , and byHii =Ai i −Ai+1 i+1 or

Hii =Aii − 1

n

n∑
k=1

Akk, (31)

with the highest weightΛ= [m1n,m2n, . . . ,mnn] changed to

Λ′i =Λi −
1

n

n∑
k=1

Λk. (32)

The unitary algebrasu(n) is given byHii , Aij −Aji and i(Aij +Aji).
Each finite-dimensional irreducible representation ofgl(n,R), and also ofAn−1, is given by a highest weightΛ

which, in the FWS basis, can always assume the form

Λ= [m′1n +w,m′2n +w, . . . ,m′nn +w]
(33)

= [m1n,m2n, . . . ,mnn], mi,n >mi+1,n > 0, n= r + 1,

wherew is an arbitrary constant and the componentsmin are non-negative integers. Each vector of the irreducible
representation (33) in the canonical chaingl(n) ⊃ gl(n − 1) ⊃ · · · ⊃ gl(1) or, equivalently,sl(n) ⊃ sl(n − 1) ⊃
· · · ⊃ sl(1), is given by the following Gelfand–Tsetlin pattern:

|m〉 =

∣∣∣∣∣∣∣∣∣
m1n m2n . . . mn−1n mnn

m1n−1 . . . mn−1n−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m12 m22
m11

∣∣∣∣∣∣∣∣∣ ,
min >mi n−1>mi+1n.

(34)

Each line of (34) characterizes one irreducible representation of a subalgebra. The matrix elements ofAij are given
by

Akk|m〉 = (rk − rk−1)|m〉,

Ak−1k|m〉 =
k−1∑
i=1

bik−1(m)|mi k−1+ 1〉,

Ak k−1|m〉 =
k−1∑
i=1

aik−1(m)|mi k−1− 1〉,

(35)

where

rk =
k∑
i=1

mik, r0= 0, 16 k 6 n,

a
j

k−1(m)=
{
−
∏k
i=1(lik − lj k−1+ 1)

∏k−2
i=1 (li k−2− lj k−1)∏k

i 6=j (lik − lj k−1+ 1)(lik − lj k−1)

}1/2

,

b
j

k−1(m)=
{
−
∏k
i=1(lik − lj k−1)

∏k−2
i=1 (li k−2− lj k−1− 1)∏k

i 6=j (lik − lj k−1)(lik − lj k−1− 1)

}1/2

,

lik =mik − i.

(36)

The matrix elementsa andb in (36) are all real numbers and(Aij )t = Aji .
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The generators of theq-deformed (or “quantum group”)slq (n) algebra satisfy the following commutation
relations [35,36]:

[Hi,Hj ] = 0,

[Ai i+1,Ai+1 i] = [Hi]q,
(37)

where

Hi =Aii −Ai+1 i+1, (38)

and

[x]q ≡ q
x − q−x
q − q−1 =

sinh(zx)

sinh(z)
, q = exp(z). (39)

Note that the deformation defined above has the following properties:

[−x]q =−[x]q,
[x]1/q = [x]q,
[0]q = 0,

[1]q = 1,

lim
q→1
[x]q = x.

(40)

When|q| 6= 1 then the irreducible representations of the deformed algebras are classified by the roots and weights
formalism as well. The irreducibleq-deformed matrix elements forslq(n) are given by the same formulae (35)
with q-deformed terms [35,37]:

a
j
k−1=

{
−
∏k
i=1[(lik − lj k−1+ 1)]q∏k−2

i=1 [(li k−2− lj k−1)]q∏k
i 6=j [(lik − lj k−1+ 1)]q [(lik − lj k−1)]q

}1/2

,

b
j

k−1=
{
−
∏k
i=1[(lik − lj k−1)]q∏k−2

i=1 [(li k−2− lj k−1− 1)]q∏k
i 6=j [(lik − lj k−1)]q [(lik − lj k−1− 1)]q

}1/2

.

(41)

Orthogonal algebras
The orthogonal algebrasso(n) formed by anti-symmetric matrices are real forms ofBr , n = 2r + 1, andDr ,

n= 2r. An elementXij of an orthogonal algebra can be written as

Xij =Aij −Aji, (Xij )
t =−Xij , (42)

whereAij are the Weyl matrices given in (28). Their commutation relations are:

[Xik,Xlm] = δklXim + δimXkl − δkmXil − δilXkm. (43)

Unfortunately, these commutation relations are not in the Cartan–Weyl canonical form.
The irreducible representations ofso(n) can be given by the following highest weights with integral or half-

integral components:

Λ= [m1 2k, . . . ,mk 2k], n= 2k+ 1, Bk,

m1 2k >m2 2k > · · ·>mk 2k > 0,

Λ= [m1 2k+2, . . . ,mk+1 2k+2], n= 2(k + 1), Dk+1,

m1 2k+2>m2 2k+2> · · ·> |mk+1 2k+2|.

(44)
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Each basis vector in the canonical chainso(n)⊃ so(n− 1)⊃ · · · ⊃ so(2) is given by the Gelfand–Tsetlin pattern

|m〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 2k m2 2k . . . mk−1 2k mk 2k
m1 2k−1 m2 2k−1 . . . mk−1 2k−1 mk 2k−1

m1 2k−2 . . . mk−1 2k−2
m1 2k−3 . . . mk−1 2k−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m14 m24
m13 m23

m12
m11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

m1 2k >m1 2k−1>m2 2k >m2 2k−1> · · ·
>mk−1 2k >mk−1 2k−1>mk 2k >mk 2k−1>−mk 2k,

m1 2k−1>m1 2k−2>m2 2k−1> · · ·
>mk−1 2k−1>mk−1 2k−2> |mk 2k−1|,

(45)

for n= 2k+ 1, and

|m〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 2k+1 m2 2k+1 . . . mk 2k+1 mk+1 2k+1
m1 2k . . . mk 2k
m1 2k−1 . . . mk 2k−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m15 m25 m34

m14 m24
m13 m23

m12
m11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

m1 2k+1>m1 2k >m2 2k+1> · · ·>mk 2k+1>mk 2k > |mk+1 2k+1|,
m1 2k >m1 2k−1>m2 2k > · · ·>mk 2k >mk 2k−1>−mk 2k,

(46)

for n = 2(k + 1). The matrix elements of anyXij can be found using (43) if the matrix elements ofX2p+1 2p,
p = 1,2, . . . , [(n− 1)/2], andX2p+2 2p+1, p = 0,1, . . . , [(n− 2)/2], are known:

X2k+2,2k+1|m〉 =
k∑
j=1

b
j
2k(m)|mj 2k + 1〉

−
k∑
j=1

b
j

2k(mj 2k)|mj 2k − 1〉 + ic2k|m〉,

X2k+1,2k|m〉 =
k∑
j=1

a
j

2k−1(m)|mj 2k−1+ 1〉

−
k∑
j=1

a
j

2k−1(mj 2k−1) |mj 2k−1− 1〉,

(47)
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where

a
j

2k−1(m)=
1

2

{ ∏k−1
r=1(lr 2k−2− lj 2k−1− 1)(lr 2k−2+ lj 2k−1)∏k

r 6=j (l2r 2k−1− l2j 2k−1)(l
2
r 2k−1− (lj 2k−1+ 1)2)

}1/2

×
{ k∏
r=1

(lr 2k − lj 2k−1− 1)(lr 2k + lj 2k−1)

}1/2

,

b
j
2k(m)=

1

2

{ ∏k
r=1(l

2
r 2k−1− l2j 2k)

∏k+1
r=1(l

2
r 2k+1− l2j 2k)

l2j 2k(4l
2
j 2k − 1)

∏k
r 6=j (l2r 2k − l2j 2k)((lr 2k − 1)2− l2j 2k)

}1/2

,

c2k(m)=
∏k
r=1 lr 2k−1

∏k+1
r=1 lr 2k+1∏k

r=1 lr 2k(lr 2k − 1)
,

lr 2k =mr 2k + k − r + 1, lr 2k−1=mr 2k−1+ k − r.

(48)

Symplectic algebras
The finite irreducible representations ofCr (or sp(2r)) are given by the integral components of the highest weight

Λ= [ω1r ,ω2r , . . . ,ωrr ], ω1r > ω2r > · · ·> ωrr > 0. (49)

Each basis vector in the non-canonical chainCr ⊃ Cr−1 ⊕ C1 ⊃ · · · is given by the Gelfand–Tsetlin–Cerkaski
pattern [34]:

|ω〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1r ω2r . . . ωr−1r ωr r
γ1r γ2r . . . γr−1r hr

ω1r−1 ω2r−1 . . . ωr−1r−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω12 ω22
γ12 h2

ω11
h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ωik > γik > ωi+1k, γk k+1> ωkk > ρk,
hk = σk, σk − 2, . . . ,−σk,

(50)

where

ρk = γk k+1−ωk+1k+1+
k∑
i=1

(2γi+1k+1−ωi+1k+1−ωik),

σk = ωkk +
k−1∑
i=1

(ωik +ωi k−1− 2γik).

(51)

In (50),ωi r−h are the components of the highest weight ofCr−h and[h1, . . . , hr ] are the weights of the weight
system1(Λ) in the FWS basis. The highest weights of theC1 algebras are given byσk in (51).

Unfortunately, there are no general formulae for the matrix elements ofCr algebras [38,34,39,24]. The following
notation

Ei 0→ null roots, i 6 r,
Ei+→ positive roots,

Ei−→ negative roots,

(52)
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Table 1
Independent invariantsCp for classical Lie algebras

p α β ri i

Ar 2,3, . . . , r r/2 0 (r + 2)/2− i 1,2, . . . , r + 1

Br 2,4, . . . ,2(r − 1), r r − 1/2 1 (r + 1/2)εi − i 1, . . . , r,0,−r, . . . ,−1

Cr 2,4, . . . ,2r r −1 (r + 1)εi − i 1, . . . , r,−r, . . . ,−1

Dr 2,4, . . . ,2r r − 1 1 rεi − i 1, . . . , r,−r, . . . ,−1

for the generatorsEit of Cr , comes from [24] where the matrix elements ofC2 andC1 were calculated directly in
the chainC2⊂ C1⊕C1 satisfying the Cartan–Weyl commutation relations.

Invariant operators
In general, there is a set ofr linearly independent self-commuting invariant operatorsCp for each Lie algebra of

rankr. They are polynomials of degreer in the algebra elements and commute with all elements of a Lie algebraL:

[Cp,L] = 0. (53)

Therefore, they must be multiples of the identity operatorI in a given irreducible representation:

Cp = CpI, (54)

whereCp is the eigenvalue ofCp. The set of independent invariants of classical algebras are given in Table 1. Their
corresponding eigenvalues, in terms of the components of the highest weight (in the FWS basis),

Λ= [m1, . . . ,mr+1], mi >mi+1> 0, for Ar,

Λ= [m1, . . . ,mr ] for Br , Cr andDr,
(55)

are given by [4, Ch. 9]:

Cp(Λ)= Tr(KpE), (56)

where

Eij = 1,

Kij = (li + α)δij − θji + 1
2β(1+ εi)δi,−j ,

li =mi + ri ,
(57)

and

θij =
{

1 for j < i,
0 for j > i, , εi =

{
0 for i = 0,
1 for i > 0,
1 for i < 0.

(58)

The constantsα, β andri are given in Table 1.

3. Structure of the KILLING package

Every algebraic procedure in the KILLING package has the same name and the same arguments in the
Maple V [25] and Mathematica [26] environments. The only difference in the syntax is that parentheses are used
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in Maple V to specify the arguments of a function instead of the brackets used in Mathematica. For example, in
Maple V we have rs(A,3) whereas in Mathematica it is written rs[A,3].

In both environments, the name X of each family of Lie algebras is a string and must be surrounded by
double quotes: {′′A ′′, ′′B′′, ′′C′′, ′′D′′, ′′E′′, ′′F′′, ′′G′′}. The corresponding rank is designated byr. An irreducible
representation is indicated byΛ and a weight (or root) byλ. The root system is indicated byΣ , the positive roots
byΣ+, and the simple roots byΠ .

In the first part (The Roots & Weights formalism), all input and output weights (and roots) are in the DYN basis,
unless it is clear from the context that they are not. In the second part (The Gelfand–Tsetlin method), all input and
output weights (and roots) are in the FWS basis.

3.1. The Roots & Weights formalism

3.1.1. Computing weights and roots
• bi(r)→ basic irreducible representationsM
• irrdim (Λ,X)→ irreducible representation dimensions
• ws(Λ,X)→weight system1(Λ)
• wsm(Λ,X)→multiplicities in1(Λ)
• power(Λ,X)→ power (or level)δ(Λ)
• layer(λ,Λ,X)→ layer indexL(λ) in 1(Λ)
• rs(X, r)→ root systemΣ
• sr(X, r)→ simple rootsΠ
• check(Σ)→ ρ,Σ+ (ρ is the half sum ofΣ+)
• algdim(X, r)→ algebra dimension

3.1.2. Exchanging bases in the weight space
• dyn2srs(λ,X)→ λDYN→ λSRS
• dyn2fws(λ,X)→ λDYN→ λFWS (classical algebras only)
• dyn2fwsm(λ,X)→ λDYN→ λFWS′ (Ar algebras only)
• fws2dyn(λ,X)→ λFWS→ λDYN (classical algebras only)
• fws2srs(λ,X)→ λFWS→ λSRS(classical algebras only)
• fws2fws(λ)→ λFWS→ λFWS (Ar algebras only)
• fws2fwsm(λ)→ λFWS→ λFWS′ (Ar algebras only)
• srs2dyn(λ,X)→ λSRS→ λDYN
• srs2fws(λ,X)→ λSRS→ λFWS (classical algebras only)
• srs2fwsm(λ,X)→ λSRS→ λFWS′ (Ar algebras only)
• Cm(X, r)→Cartan matricesA
• Wm(X, r)→Weight matricesW (classical algebras only)
• Rm(X, r)→Root matricesR (classical algebras only)
• Cm(X, r, ′′inv′′)→ inverse Cartan matrices
• Wm(X, r, ′′inv′′)→ inverse Weight matrices (classical algebras only)
• Rm(X, r, ′′inv′′)→ inverse Root matricesR (classical algebras only)

3.1.3. Operations in the weight space
• kronecker(Λ′,Λ′′,X)→ Kronecker productΛ′ ×Λ′′
• sprod(λ′, λ′′,X)→ scalar productλ′ · λ′′
• angle(λ′, λ′′,X)→ angle between two weights
• casimir(Λ,X)→ eigenvalue of the Casimir operators
• dominant(hwts,X)→ sorts highest weights in descending order
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• sortwts(wts)→ sorts weights in descending order
• weyl(i, λ,X)→Weyl reflection ofλ through the simple rootαi
• weyl(λ′, λ,X)→Weyl reflection ofλ through the weightλ
• t2l(wts)→ converts a table of weights into a flat list of weights (Maple V) or flattens a list of lists of weights

(Mathematica)

3.2. The Gelfand–Tsetlin method

In the following procedures,|m〉 is a generic Gelfand–Tsetlin vector andM is a specific Gelfand–Tsetlin basis.
The optional argumentz is the deformation parameterq = exp(z).

3.2.1. Eigenvectors
• patterns(X,r)→Gelfand–Tsetlin basisM

3.2.2. Matrix elements
• Ame(i, k, |m〉)→matrix elements of the generatorAik for Ar algebras
• Ame(i, k, |m〉, z)→ q-deformed matrix elements of the generatorqAik for deformedAr algebras
• Ome(i, k, |m〉)→matrix elements of the generatorXik for Br andDr algebras
• Cme(i, t, |m〉)→matrix elements of the generatorEit for C1 andC2 algebras
• Aim (i, k,M)→ irreducible matrixAik for Ar algebras
• Aim (i, k,M,z)→ q-deformed irreducible matrixqAik for deformedAr algebras
• Oim(i, k,M)→ irreducible matrixXik for Br andDr algebras
• Cim(i, t,M)→ irreducible matrix ofEit for C1 andC2 algebras

3.2.3. Eigenvalues
• spectra(n,Λ,X)→ eigenvalue of the invariantCn(Λ)

3.2.4. Auxiliary routines
• m_jk (m,j, k,p)→mjk→mjk + p (m is a Gelfand–Tsetlin vector)
• qdeform(x, q)→ q-deformation ofx
• commute(a, b)→ commutator[a, b] = ab− ba
• commute(a, b, q)→ q-commutator[a, b]q = ab− qba

4. Detailed description of the KILLING package

In this section, we present a detailed description of each routine in the KILLING package, including comments
on the codes, examples and comments on the basic theorems about the representation theory of finite semisimple
Lie algebras.

Every algebraic procedure in the KILLING package has the same name and arguments in the Maple V [25]
and Mathematica [26] environments. The only difference in the syntax is that parentheses are used in Maple V
to specify the arguments of a function instead of the brackets used in Mathematica. For example, in Maple V we
have rs(A,3) whereas in Mathematica it is written rs[A,3]. It must be observed that weights are represented by
lists in both algebraic languages and that lists are only represented by brackets [] in Maple V and by braces {} in
Mathematica. Therefore, we do not have any way, other than the context, to differentiate the DYN, SRS and FWS
bases in either symbolic computational softwares.

In this section, the name of each family of Lie algebras is a string X which must be surrounded by double
quotation marks in both environments: {′′A ′′, ′′B′′, ′′C′′, ′′D′′, ′′E′′, ′′F′′, ′′G′′}. The corresponding rank is designated
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by r. An irreducible representation is indicated byΛ, a weight byλ, and a simple root byαi . The weight system
is indicated by1(Λ) and the root system byΣ . The positive roots are denoted byΣ+, and the simple roots
byΠ .

In the first part (The Roots & Weights formalism), all input and output weights (and roots) are in the DYN basis,
unless it is clear from the context that they are not. In the second part (The Gelfand–Tsetlin method), all input and
output weights (and roots) are in the FWS basis.

4.1. The Roots & Weights formalism

Weights and roots are represented by lists in the Maple V and Mathematica algebraic programming languages.
Therefore, the weightΛ, whose components areΛi , written asΛ= (Λ1, . . . ,Λr) in the DYN basis for an algebra
of rankr, must be typed

Λ := [Λ1, . . . ,Λr ]→ in Maple V,

Λ= {Λ1, . . . ,Λr }→ in Mathematica.

4.1.1. Computing roots and weights
The procedurebi(r) writes the basic irreducible representations (irreps)M i , i 6 r, in the DYN basis for any Lie

algebra of rankr. Its output is a list of highest weights:

bi(r)→[M1, . . . ,M r ] Maple V,

bi[r]→ {M1, . . . ,M r } Mathematica.

Example 1. The basic irreps for algebras of rank two and three are, respectively:

bi(2)→ (1,0), (0,1); bi(3)→ (1,0,0), (0,1,0), (0,0,1).

When roots and weights are written in the FWS basis, the Weyl formula (27) for the dimension of the irreducible
representationΛ= [l1, . . . , lr ′ ], r ′ = r + 1 forAr andr ′ = r for Br , Cr , andDr , can be simplified to [5, Ch. 5]:

Ar→ dim(Λ)=
r+1∏
k>i=1

(
pi − pk
gi − gk

)
, gi = r

2
− i + 1,

Br → dim(Λ)=
r∏
i=1

pi

gi

r∏
k>i=1

(
p2
i − p2

k

g2
i − g2

k

)
, gi = r − i + 1

2
,

Cr → dim(Λ)=
r∏
i=1

pi

gi

r∏
k>i=1

(
p2
i −p2

k

g2
i − g2

k

)
, gi = r − i + 1,

Dr → dim(Λ)=
r∏

k>i=1

(
p2
i − p2

k

g2
i − g2

k

)
, gi = r − i,

where

pi = gi + li . (59)

When X is one of the four classical algebras, the procedureirrdim (Λ,X) uses the formulae above. For the
exceptional Lie algebras, the dimensions are directly calculated from the Weyl formula (27). The input highest
weightΛ must be in the DYN basis.
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Example 2. The dimension ofΛ= (1,1) (adjoint representation) ofA2 is computed as follows:

irrdim(Λ,′′A′′)→ 8.

In the same way, the dimension ofΛ= (2,0,0) (adjoint representation) ofC3 is:

irrdim(Λ,′′C′′)→ 21.

Example 3. Dimensions can also be calculated in algebraic form. For example, the dimension of the representation
Λ= (m) of A1, or su(2) (the angular momentum algebra), is:

irrdim(Λ,′′A′′)→m+ 1.

The weight system1(Λ) of an irreducible representationΛ= (Λ1, . . . ,Λr) can be calculated in the DYN basis
using the following algorithm [5, Ch. 5]:

Algorithm 1.

• Calculate the heightδ(Λ) of the representationΛ;
• Write down all simple rootsαi = (A1i , . . . ,Ari) from the Cartan matrixA;
• Starting with the highest weightΛ, whose layer index isLΛ(Λ) = 0, repeat each of the following steps for

each weight of the same layer index:
(1) For each componentΛi > 0, write down the string of weightsωk =Λ− (k − 1)αi, 16 k 6Λi + 1;
(2) Group the new weightsωk according to their layer index,LΛ(ωk);
(3) Move to the next layer index set of weights and repeat the last two steps, switching the highest weightΛ

with each new weightωk ;
• Continue this process until the lowest weight in the last layerδ(Λ)+ 1 is reached.

Algorithm 1 is used by the procedurews(Λ,X) to calculate the weight system1(Λ) for all classical and
exceptional Lie algebras X. The output is a set of sets of weights grouped by their layer indicesLΛ(λ):

ws(Λ,X)→ table([0= [Λ], . . . ,LΛ(λ)= [λ, . . .]]) Maple V,

ws[Λ,X]→ {{Λ}, . . . , {λ, . . .}} Mathematica.

Example 4. The fundamental defining representationΛ= (1,0) of dimension 3 ofA2 (or su(3)) has the following
weight systemΥ ≡1(Λ) in the DYN basis:

ws(Λ,′′A′′)→

LΛ(λ) ↔ λ

0 = (1,0)

1 = (−1,1)

2 = (0,−1)

Note that the lowest weight is(0,−1) instead of(−1,0). The fundamental representationΛ = (1,0,0) of
dimension 6 ofC3 (or sp(6)) has the following weight systemΥ ≡1(Λ) in the DYN basis:
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ws(Λ,′′C′′)→

LΛ(λ) ↔ λ

0 = (1,0,0)

1 = (−1,1,0)

2 = (0,−1,1)

3 = (0,1,−1)

4 = (1,−1,0)

5 = (−1,0,0)

All weights in these two examples are multiplicity free.

Example 5. The representationΛ = (1,1,0) of dimension 64 ofC3 (or sp(6)). Its weight system1(Λ) in the
DYN basis is:

ws(Λ,′′C′′)→

LΛ(λ) ↔ λ

0 = (1,1,0)

1 = (2,−1,1), (−1,2,0)

2 = (0,0,1), (2,1,−1)

3 = (3,−1,0), (−2,1,1), (1,−2,2), (0,2,−1)

4 = (−2,3,−1), (1,0,0), (−1,−1,2)

5 = (−1,1,0), (1,2,−2), (2,−2,1)

6 = (−3,2,0), (0,−1,1), (−1,3,−2), (2,0,−1)

7 = (0,1,−1), (3,−2,0), (1,−3,2), (−2,0,1)

8 = (−1,−2,2), (1,−1,0), (−2,2,−1)

9 = (−1,0,0), (1,1,−2), (2,−3,1)

10 = (−1,2,−2), (−3,1,0), (0,−2,1), (2,−1,−1)

11 = (−2,−1,1), (0,0,−1)

12 = (1,−2,0), (−2,1,−1)

13 = (−1,−1,0)

Here we count only 38 weights instead of 64. Some weights have a multiplicity greater than one. The procedure
wsmmust be used in order to determine the multiplicities. We can see that the layer of indexi has the same number
of weights as the layer of indexδ(Λ)− i (δ(Λ)= 13 for this case). This is a general characteristic of any weight
system. Note that the lowest weight is equal to−Λ.

The (inner) multiplicityηλ of a weightλ in the weight system1(Λ) can be calculated recursively by the
Freudenthal formula (25) using the following algorithm [5,40]:

Algorithm 2.

• Compute the weight system;
• Split the weight system in sets of equivalent weights;
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• Find the dominant weight (or the weight with the lowest layer index) in each set of equivalent weights;
• Sort the dominant weights in ascending order;
• Compute the multiplicity of each dominant weight.

The procedurewsm(Λ,X) was implemented using Algorithm 2. Its output is a list of two elements: the first
element is the dimension and the second element is a list of lists of equivalent weights in which the multiplicityη

is given in the first positions:

wsm(Λ,X)→[dim, [[ηλ, [λ, . . .]], . . .]] Maple V,

wsm[Λ,X]→ {dim, {{ηλ, {λ, . . .}}, . . .}} Mathematica.

Example 6. The multiplicities in the weight system1(Λ),Λ= (1,1,0), of C3 are:

wsm(Λ,′′C′′)→

ηλ → λ

1 → (−1,3,−2), (2,−3,1), (1,−2,2), (1,−3,2),

(−1,−2,2), (2,1,−1), (−2,3,−1), (−2,1,−1),

(1,1,−2), (2,−1,−1), (1,2,−2), (3,−2,0),

(1,−2,0), (1,1,0), (2,−1,1), (−1,−1,2),

(−1,2,0), (−3,1,0), (−1,2,−2), (−2,1,1),

(−2,−1,1), (3,−1,0), (−1,−1,0), (−3,2,0),

2 → (2,0,−1), (0,0,1), (0,−2,1), (−2,0,1),

(0,0,−1), (0,2,−1), (2,−2,1), (−2,2,−1),

4 → (0,1,−1), (−1,0,0), (1,−1,0),

(0,−1,1), (1,0,0), (−1,1,0)

When grouped by layers and the multiplicities are included, the number of weights in each layer has the following
structure:

L ↔ number of weights

0 = •
1 = ••
2 = • • •
3 = • • ••
4 = • • • • ••
5 = • • • • ••
6 = • • • • • • •

It can be seen from the structure shown above that number of weights in a given layer is greater than or equal to
the number of weights in the previous layer until the middle of the layer tree. The second part (not shown above)
is a mirror image of the first part. This is another feature of any weight system.
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The powerδ(Λ), given in (24), and the layer indexLΛ(λ) of a weightλ in an irreducible representationΛ, given
in (23), are computed by the procedurespower(Λ,X) and layer(λ,Λ,X), respectively. Their outputs are positive
numbers.

Example 7. The power of the highest weightΛ = (1,1,0) for C3, whose weight system was calculated in
Example 5, is

power(Λ,′′C′′)→ 13.

The powerδ(Λ) = 13 means that the irreducible representationΛ has 14 layers. The layer index of the weight
λ= (1,0,0) inside that irreducible representation is

layer(λ,Λ,′′C′′)→ 4.

Roots are the weights of the adjoint representation. In the DYN basis we have the following highest weightsΛ

for the adjoint representations of classical Lie algebras [28,30]:

A1→Λ= (2),
Ar→Λ= (1,0,0, . . . ,0,1), r > 1,

B1→Λ= (2),
B2→Λ= (0,2),
Br →Λ= (0,1,0, . . . ,0), r > 2,

Cr →Λ= (2,0, . . . ,0), r > 1,

D3→Λ= (0,1,1),
Dr →Λ= (0,1,0, . . . ,0), r > 3;

and

E6→Λ= (0,0,0,0,0,1),
E7→Λ= (1,0,0,0,0,0,0),
E8→Λ= (0,0,0,0,0,0,1,0),
F4→Λ= (1,0,0,0),
G2→Λ= (1,0)

for exceptional algebras. The orthogonal algebraD2 can be written asD2=A1⊕A1. The highest weightsΛ given
above are used in the procedurers(X, r) which calls the procedurews(Λ,X) to compute the corresponding root
systemΣ(Λ). The output of rs is the output of ws.

Example 8. TheA2 algebra has eight elements and its root system is:

rs(′′A′′,2)→

LΛ(λ) ↔ λ

0 = (1,1)

1 = (2,−1), (−1,2)

2 = (0,0)

3 = (−2,1), (1,−2)

4 = (−1,−1)
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From the symmetry of a weight system grouped by layers, the null root(0,0) must have a degeneracy of degree
two. For any simple Lie algebra of rankr, the null root, which has a degeneracy of degreer, is the only degenerated
root.

Example 9. TheC3 algebra has 21 elements and its root system is:

rs(′′C′′,3)→

LΛ(λ) ↔ λ

0 = (2,0,0)

1 = (0,1,0)

2 = (−2,2,0), (1,−1,1)

3 = (−1,0,1), (1,1,−1)

4 = (0,−2,2), (−1,2,−1), (2,−1,0)

5 = (0,0,0)

6 = (−2,1,0), (0,2,−2), (1,−2,1)

7 = (1,0,−1), (−1,−1,1)

8 = (−1,1,−1), (2,−2,0)

9 = (0,−1,0)

10 = (−2,0,0)

The simple roots are always alone in the first layer before the middle of the layer tree, and the positive roots are in
the first half of the layer tree.

The proceduresr(X, r) gives a list of simple rootsαi computed from the Cartam matrices for a Lie algebra X of
rankr:

sr(X, r)→Π = [α1, . . . , αr ] Maple V,

sr[X, r]→Π = {α1, . . . , αr } Mathematica.

Example 10. In the DYN basis, the simple roots ofA2 andC3 are, respectively:

sr(′′A′′,2)→ α1= (2,−1), α2= (−1,2),

sr(′′C′′,3)→ α1= (2,−1,0), α2= (−1,2,−1), α3= (0,−2,2).

The procedurecheck(Σ) extracts the positive roots from a root systemΣ in the DYN basis. Its output is a list
with the Weyl vectorρ = (1, . . . ,1) (half the sum of the positive roots) and a list with the positive rootsΣ+:

check(Σ)→[ρ,Σ+] Maple V,

check[Σ] → {ρ,Σ+} Mathematica.

Therefore it can be used to check whether the root system is complete or not.
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Example 11. From Examples 8 and 9, the positive roots forA2 andC3 are, respectively:

check(ΣA2)→ ρ = (1,1), Σ+A2
= (1,1), (2,−1), (−1,2)

check(ΣC3)→ ρ = (1,1,1),Σ+C3
= (2,0,0), (0,1,0), (−2,2,0),

(1,−1,1), (−1,0,1), (1,1,−1),

(0,−2,2), (−1,2,−1), (2,−1,0)

The dimension of a given algebra can be calculated directly from the rankr:

algebra→ dimension

Ar→ r(r + 2),

Br→ r(2r + 1),

Cr→ r(2r + 1),

Dr→ r(2r − 1),

Er→ 30r2− 335r + 1008, r = 6,7,8,

F4→ 52, r = 4,

G2→ 14, r = 2.

The procedurealgdim(X, r) computes the algebra dimension using the formulae above.

4.1.2. Writing weights in different bases
The Cartan matrixA, given in (8), for an algebra X of rankr, is responsible for the exchange of bases between

the DYN and SRS bases as indicated in (15). The Cartan matrices are computed by the procedureCm(X, r) using
the following explicit non-null matrix elementsAij [5, Ch. 5]:

Ar→Aij =
{+2 if i = j ,
−1 if |i − j | = 1;

Dr →Aij =


+2 if i = j ,
−1 if |i − j | = 1 andi, j 6 r − 1,
−1 if j = i + 2= r,
−2 if i = j + 2= r;

Br →Aij =


+2 if i = j ,
−1 if |i − j | = 1 andi, j 6 r − 1,
−1 if j = i + 1= r,
−2 if i = j + 1= r;

Cr →Aij =


+2 if i = j ,
−1 if |i − j | = 1 andi, j 6 r − 1,
−2 if j = i + 1= r,
−1 if i = j + 1= r.

Note that the transpose of the Cartan matrix ofBr is equal the Cartan matrix ofCr . The inverse Cartan matrices [5,
Ch. 5] are computed by the same procedure using the optional third argument′′inv′′: Cm(X, r, ′′inv′′). For the
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exceptional algebras, the Cartan matrices are computed from (8). The proceduresdyn2srs(λ,X) andsrs2dyn(λ,X)
implement the exchange of bases DYN↔ SRS:

Cm(X, r)→A, Cm(X, r, ′′inv′′)→A−1,

srs2dyn(λSRS,X)→ λDYN, dyn2srs(λDYN,X)→ λSRS.

Example 12. The Cartan matrix and its inverse forA2 are:

Cm(′′A′′,2)→A=
(

2 −1
−1 2

)
, Cm(′′A′′,2, ′′inv′′)→A−1= 1

3

(
2 1
1 2

)
.

The simple roots ofA2, given in Example 10 in the DYN basis, can be rewritten in the SRS basis by multiplying
them byA−1:

dyn2srs(ΠDYN,
′′A′′)→ α1= {1,0}, α2= {0,1}.

The positive roots forA2, given in Example 10 in DYN basis, when rewritten in the SRS basis are:

dyn2srs(Σ+DYN,
′′A′′)→Σ+SRS= {1,1}, {1,0}, {0,1}.

Since the simple roots are the basis vectors of the SRS basis, this is exactly what we were expecting.

Example 13. We can analogously rewrite the simple roots ofC3, given in Example 10, and the positive roots,
given in Example 11, in the SRS basis:

dyn2srs(ΠDYN,
′′C′′)→ α1= {1,0,0}, α2= {0,1,0}, α3= {0,0,1},

dyn2srs(Σ+DYN,
′′C′′)→Σ+SRS= {2,2,1}, {1,2,1}, {0,2,1},

{1,1,1}, {0,1,1}, {1,1,0},
{1,0,0}, {0,1,0}, {0,0,1}.

The Cartan matrix and its inverse forC3 are:

Cm(′′C′′,3)→A=
( 2 −1 0
−1 2 −2

0 −1 2

)
, Cm(′′C′′,3,′′inv′′)→A−1= 1

2

(2 2 2
2 4 4
1 2 3

)
.

The Weight matrixW associated with an algebra X of rankr is computed by the procedureWm(X, r) using the
following explicit non-null matrix elementsWij [5, Ch. 5]:

Ar→Wij =
{+1 if i = j ,
−1 if j = i + 1, j 6 r + 1;

Br →Wij =
{+2 if i = j = r,
+1 if i = j andi, j 6 r − 1,
−1 if j = i + 1 andi 6 r − 1;

Cr →Wij =
{+1 if i = j ,
−1 if j = i + 1;

Dr →Wij =


−1 if i = j = r,
+1 if i = j + 1= r,
+1 if j = i + 1= r,
−1 if j = i + 1= r andj 6 r − 1,
+1 if i = j andi, j 6 r − 1.
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Note that the Weight matrix ofAr has r + 1 columns. The inverse matrices [5, Ch. 5] are computed by the
same procedureWm(X, r, ′′inv′′) using the optional third argument′′inv′′. These matrices are responsible for
the exchange of bases between the DYN and FWS bases (for classical Lie algebras only). The procedures
dyn2fws(λ,X) andfws2dyn(λ,X) implement the exchange of bases DYN↔ FWS:

Wm(X, r)→W, Wm(X, r, ′′inv′′)→W−1,

fws2dyn(λFWS,X)→ λDYN, dyn2fws(λDYN,X)→ λFWS.

Example 14. The Weight matrix and its “inverse” forA2 are:

Wm(′′A′′,2)→W =
(

1 −1 0
0 1 −1

)
,

Wm(′′A′′,2,′′inv′′)→W−1= 1

3

( 2 1
−1 1
−1 −2

)
.

Note that these matrices are not square matrices, and so they occur only inAr algebras:

WW−1 =
(

1 0
0 1

)
, W−1W = 1

3

( 2 −1 −1
−1 2 −1
−1 −1 2

)
.

The weight systemΥ of the fundamental representation ofA2, given in Example 4 in the DYN basis, can be
rewritten in the FWS basis by multiplying them byW−1:

dyn2fws(ΥDYN,
′′A′′)→
λ1 = 1

3[2,−1,−1], λ2= 1
3[−1,2,−1], λ3= 1

3[−1,−1,2].

The fractions appearing in the components of the weights given in the above example are easily avoided because
in the FWS basis forAr algebras (and only forAr algebras) the sum of the components of any weight (or root) is
zero, that is, the weights are perpendicular top = [1,1, . . . ,1]. This is done by the procedurefws2fws(λ,m):

fws2fws(λ,m)→ λ+m.

Example 15. Therefore, we can add a constantm = 1/3 to each weight in the weight systemΥ given in the
previous example:

fws2fws(ΥFWS,
1
3)→ λ1= [1,0,0], λ2= [0,1,0], λ3= [0,0,1].

This is exactly what we were expecting if the weights of the defining fundamental representation were all linearly
independent since they are the basis vectors of the FWS basis. In fact we haveλ3=−(λ1+ λ2), which means that
only λ1 andλ2, for example, are linearly independent (they form the modified-FWS basis; see Example 17). This
is not the case for the other classical Lie algebras. For example, the positive weights in the weight systemΥ of the
fundamental representation ofC3, given in Example 4 in the DYN basis, can be rewritten in the FWS basis as:

dyn2fws(ΥDYN,
′′C′′)→ λ1= [1,0,0], λ2= [0,1,0], λ3= [0,0,1].

In this case we have three true linearly independent weights.

Example 16. The positive rootsΣ+ given in Example 11, in the DYN basis, for the algebrasA2 andC3 can
respectively be written in the FWS basis as follows:
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dyn2fws(Σ+DYN,
′′A′′)→Σ+FWS= [1,0,−1], [1,−1,0], [0,1,−1],

dyn2fws(Σ+DYN,
′′C′′)→Σ+FWS= [2,0,0], [1,1,0], [0,2,0]

[1,0,1], [0,1,1], [1,0,−1]
[1,−1,0], [0,1,−1], [0,0,2].

For A2, the simple roots areα1 = [1,−1,0] andα2 = [0,1,−1], while for C3 they areα1 = [1,−1,0], α2 =
[0,1,−1] andα3= [0,0,2].

The exchanges of bases given in (19)–(21) for theAr algebras are implemented by the procedures:

fws2fwsm(λ)→ λ− λr+1,

dyn2fwsm(λDYN)→ λFWS′ , fwsm2dyn(λFWS′)→ λDYN,

srs2fwsm(λSRS)→ λFWS′ , fwsm2srs(λFWS′)→ λSRS.

Example 17. The weights shown in Example 14, in the FWS basis, can be rewritten in the FWS’ basis as:

fws2fwsm(ΥFWS)→ λ1= [1,0], λ2= [0,1], λ3= [−1,−1].
Now it is obvious that there are only two linearly independent weights.

The Root matricesRA = (WA)
t , RB = (WC)

t , RC = (WB)
t andRD = (WD)

t are responsible for the exchange
SRS→ FWS for classical algebras [5, Ch. 5]. They are computed by the procedureRm(X, r) and their inverse
matrices byRm(X, r, ′′inv′′). The proceduresfws2srs(λ, ′′X ′′) andsrs2fws(λ, ′′X ′′) implement the exchange of
bases SRS↔ FWS:

Rm(X, r)→ R, Rm(X, r, ′′inv′′)→R−1,

srs2fws(λSRS,X)→ λFWS, fws2srs(λFWS,X)→ λSRS.

4.1.3. Operations in the weight space
In a Kronecker productΛ′×Λ′′ between two irreducible representationsΛ′ andΛ′′, every weight in1(Λ′×Λ′′)

is given by:

1(Λ′ ×Λ′′)=1(Λ′)+1(Λ′′). (60)

The Kronecker product representation is reducible:

Λ′ ×Λ′′ =
∑
Λ

⊕ηΛΛ, (61)

whereηΛ is the (outer) multiplicity of the irreducible representationΛ. It can be shown [41] that all possible
highest weights in1(Λ′ ×Λ′′) are in1(Λ′)+Λ′′ or1(Λ′′)+Λ′. The irreducible components in the DYN basis
and their degeneracies can be found using the following algorithm [5,41]:

Algorithm 3.

• Compute the weight systems ofΛ′ andΛ′′;
• Compute the weights of the Kronecker productΛ′ ×Λ′′ and group and sort them by their multiplicities;
• Find all possible highest weights and sort them from the highest to the lowest dimensional weights;
• Remove from the weight system1(Λ′)+1(Λ′′) the weight systems corresponding to the previous highest

weights. The number of times that each irreducible representation is removed from the Kronecker product
weight system is its degeneracy.
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The procedurekronecker(Λ′,Λ′′,X) was implemented using Algorithm 3. Its output is a list of lists of highest
weightsΛ with their multiplicitiesηΛ in the first positions:

kronecker(Λ′,Λ′′,X)→[[ηΛ,Λ], . . .] Maple V,

kronecker[Λ′,Λ′′,X]→ {{ηΛ,Λ}, . . .} Mathematica.

Example 18. The fundamental representation,M1 = (1,0,0), for C3 has dimension six. The remaining basic
representations,M2 = (0,1,0) andM3 = (0,0,1), both of dimension 14, can be obtained from the Kronecker
productsM1×M1 andM1×M1×M1, respectively:

kronecker(M1,M1,
′′C′′)→ (2,0,0)⊕ (0,1,0)⊕ (0,0,0),

kronecker(M1, (2,0,0),′′C′′)→ (3,0,0)⊕ (1,1,0)⊕ (1,0,0),
kronecker(M1, (0,1,0),′′C′′)→ (1,1,0)⊕ (0,0,1)⊕ (1,0,0),
kronecker(M1, (0,0,0),

′′C′′)→ (1,0,0),

∴M1×M1×M1= 2(1,1,0)⊕ (3,0,0)⊕ (0,0,1)⊕ 3(1,0,0).

The dimension of(1,1,0) is 64, and the dimension of(3,0,0) is 56. The representations which can (cannot) be
obtained from Kronecker powers of the fundamental basic representation are called vector (spinor) representations.
In general, forAr andCr algebras, the basic representations are vector representations andM i

1 6⊃M i .

Example 19. The basic representationsM r of Br , M r−1 andM r of Dr , andM2 of G2 are examples of spinor
representations:

kronecker((1,0), (1,0),′′B′′)→ (2,0)⊕ (0,2)⊕ (0,0),
kronecker((1,0), (1,0),′′G′′)→ (2,0)⊕ (0,3)⊕ (0,2)⊕ (1,0)⊕ (0,0),
kronecker((1,0,0), (1,0,0),′′D′′)→ (2,0,0)⊕ (0,1,1)⊕ (0,0,0).

From the examples above, we can see thatM1×M1 6⊃M2 for B2,D3 andG2.

The equivalence relation between two weightsλ andλ′ given by a Weyl reflectionσi through the simple rootαi
for an algebra X is computed by the procedureweyl(i, λ,X). Its output is a weightλ′ equivalent toλ. The reflection
through an arbitrary weightλ′′ is given by the same procedure:weyl(λ′′, λ,X).

Example 20. The equivalent weights to the weightλ = (1,0,0) of C3 (see Example 6) through the simple roots
α1, α2 andα3 given in Example 10, are:

weyl(1, λ,′′C′′)→ (−1,1,0),

weyl(2, λ,′′C′′)→ (1,0,0),

weyl(3, λ,′′C′′)→ (1,0,0).

Weights can be ordered in any basis. The proceduresortwts(wts) sorts a list of weights wts in descending
order. As we can see from the following example, the ordering process based only on the difference of weights, as
established in Section 2.1, can change from basis to basis.

Example 21. Let us sort the following set of weights forC2:
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ωDYN = (1,2), (3,4), (0,3),
ωSRS= {3,5/2}, {7,11/2}, {3,3},
ωFWS= [3,2], [7,4], [3,3].

Since all their components are positive, they represent irreducible representations of dimension 40, 420 and 30,
respectively. Their respective heights are 11, 25 and 12. We have in the DYN, SRS and FWS bases, respectively:

sortwts(ωDYN,
′′C′′)→ (3,4), (1,2), (0,3),

sortwts(ωSRS,
′′C′′)→{7,11/2}, {3,3}, {3,5/2}= (3,4), (0,3), (1,2),

sortwts(ωFWS,
′′C′′)→[7,4], [3,3], [3,2]= (3,4), (0,3), (1,2).

Note that the sorting process only coincides for the SRS and FWS basis.

The proceduredominant(hwts,X) sorts a list of highest weights hwts in the DYN basis in descending order by
their heights and their dimensions, respectively.

Example 22. For the same set of weights in the previous example, the output of thedominant procedure is:

dominant(ωDYN,
′′C′′)→ (3,4), (0,3), (1,2).

The scalar product between the weightsλ and λ′ in the DYN basis is implemented by the procedure
sprod(λ,λ′,X). This scalar product is calculated by [5, Ch. 5]

λ · λ′ =
r∑
i=1

(λ)DYN
i {λ′}SRS

i Ni, Ni = |αi |
2

2
, (62)

whereαi represents the simple roots. The normalizing factor 2Ni can be set by the user through the global variable
ShortRoots2. Its default value is 2, corresponding to the length of the short roots equal to

√
2. The angle in radians

between the weightsλ andλ′ is given by the procedureangle(λ,λ′,X).

Example 23. Let us now determine the lengths of the weights of the DYN, SRS and FWS bases and their relative
angles for theA2 algebra. The DYN basis is formed by the basic representationsM1= (1,0)= [2,−1,−1]/3 and
M2= (0,1)= [1,1,−2]/3:

sprod(M1,M1,
′′A′′)→ |M1|2= 2/3, sprod(M2,M2,

′′A′′)→|M2|2= 2/3,

sprod(M1,M2,
′′A′′)→M1 ·M2= 1/3, angle(M1,M2,

′′A′′)→ π/3.

The SRS basis is formed by the simple rootsα1= (2,−1)= [1,−1,0] andα2= (−1,2)= [0,1,−1]:
sprod(α1, α1,

′′A′′)→ |α1|2= 2, sprod(α2, α2,
′′A′′)→|α2|2= 2,

sprod(α1, α2,
′′A′′)→ α1 · α2=−1, angle(α1, α2,

′′A′′)→ 2π/3.

The FWS basis is formed by the positive weights of the fundamental representationλ1 = (1,0)= [2,−1,−1]/3,
λ2= (−1,1)= [−1,2,−1]/3 (λ3=−λ1− λ2):

sprod(λi, λi ,′′A′′)→ 2/3, sprod(λi , λj ,′′A′′)→−1/3,

angle(λi , λj ,′′A′′)→ 2π/3.

It must be observe that, although the weightsλ1, λ2 andλ3 are not orthogonal vectors for theA2 algebra, the scalar
products can be calculated using a unity metric in the FWS basis [5, Ch. 5]:

u · v=
∑
i

[u]i[v]i . (63)
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It can be seen from the cases above that the same results for all scalar products can be obtained directly from (63)
using the FWS components. For all other algebras, the FWS basis has orthogonal vectors. The same is not true
when the fractions are eliminated from the FWS basis (modified-FWS) forAr algebras. The SRS and DYN bases
are not orthogonal, but they are dual to each other, that is,α1 ·M2= α2 ·M1= 0.

4.1.4. Comments
Before closing this subsection, it is essential to make some comments about the canonical forms (5) (Cartan–

Weyl) and (7) (Chevalley) for the commutation relations ofAr algebras. Let us consider theA2 algebra as an
example. Its simple roots in the FWS basis areα1 = [1,−1,0] andα2 = [0,1,−1] (see Example 16). The third
positive root isα3 = α1 + α2. Let E+i , E−i andHi , i 6 3, be the elements associated with the positive, negative
and null roots, respectively. Although there are only two null roots, let us assume for a moment that there are three.
In that case, using the simple root components given in the FWS basis, we have from (5) the following defining
commutation relations:

[H1,H2] = 0, [H1,H3] = 0, [H2,H3] = 0,

[H1,E
+
1 ] =E+1 , [H2,E

+
1 ] = −E+1 , [H3,E

+
1 ] = 0,

[H1,E
+
2 ] = 0, [H2,E

+
2 ] =E+2 , [H3,E

+
2 ] = −E+2 ,

[H1,E
+
3 ] =E+3 , [H2,E

+
3 ] = 0, [H3,E

+
3 ] = −E+3 ,

[E+1 ,E−1 ] =H1−H2, [E+2 ,E−2 ] =H2−H3, [E+3 ,E−3 ] =H1−H3.

(64)

We can see from this adjoint representation that there are only two linearly independent elementsHi since
H1 +H2 + H3 = 0. This reflects the fact that the roots are perpendicular top = [1,1,1] in the FWS basis (for
Ar algebras only). These commutation relations define the special (traceless) general linear Lie algebrasl(3). It
is a subalgebra of the non-semisimple general Lie algebragl(3) which also contains the non-null trace matrices.
In general,gl(r + 1)= I ⊕ sl(r + 1), whereI is the unidimensional Abelian algebra formed by multiples of the
identity andsl(r + 1) is the special linear semisimple Lie algebra associated withAr . The Chevalley commutation
relations are simpler than the Cartan–Weyl commutation relations. Indeed, using the simple roots in the DYN basis,
α1= (2,−1) andα2= (−1,2) in (7) we have (see Example 11):

[h1, h2] = 0,

[h1, e1] = 2e1, [h2, e1] = −e1,

[h1, e2] = −e2, [h2, e2] = 2e2,

[e1, f1] = h1, [e2, f2] = h2.

(65)

Comparing (64) with (65), we haveh1=H1−H2, h2=H2−H3, ei =E+i andfi =E−i .
As an introduction to the next subsection, let us use (14) in order to write the matrices of the fundamental

representation given in Example 4 for theA2 algebra. Let the ordering of the weights be|1〉 = λ1 = (1,0),
|2〉 = λ2 = (−1,1) and |3〉 = λ3 = (0,−1). The positive roots in the DYN basis areα1 = (2,−1), α2 = (−1,2)
andα3= (1,1) (see Example 11). This representation is three-dimensional. Since the weights are the eigenvalues
of the elements of the Cartan subalgebra, we have:

h1=
(1

−1
0

)
, h2=

(0
1
−1

)
. (66)
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Sinceλ2+ α1= λ1 (λ1− α1= λ2), λ3+ α2= λ2 (λ2− α2= λ3) andλ3+ α3= λ1 (λ1− α3= λ3), then it follows
from (14) that

e1=
(0 x1 0

0 0 0
0 0 0

)
, e2=

(0 0 0
0 0 x2
0 0 0

)
, e3=

(0 0 x3
0 0 0
0 0 0

)
, (67)

andfi = (ei)t (real transposition). From the last relation in (65), we can choosex1= x2= 1. Sinceα3= α1+ α2

andα1− α2= (3,−3) is not a root, then from (7), withm= 0, we have

e3=±[e1, e2], (68)

from which we can choosex3= 1. The matrices in (66)–(67) satisfy the commutation relations given in (65).

4.2. The Gelfand–Tsetlin method

The Gelfand–Tsetlin formulae for the matrix elements are known only for unitaryAr and orthogonalBr andDr
algebras [22,21,4]. For symplectic algebras, there are only a few particular cases [38,34,39,24].

In the following procedures, X is one of the classical algebras {′′A ′′, ′′B′′, ′′C′′, ′′D′′}. All weights must be in
FWS basis (FWS with integral components forAr ).

4.2.1. The Gelfand–Tsetlin patterns
The complete set of Gelfand–Tsetlin patterns (quantum numbers) for a given irreducible representationΛ (in

the FWS basis) is computed in two steps: the procedurepatterns(X, r) must be used to write a specific procedure
vXr(Λ) which is used to compute all vectors ofΛ. The procedure vXr is written on the hard disk in a directory
specified by the global variableWorkDir . Its default value is the current directory “./”. The output of vXr is a list
with the Gelfand–Tsetlin patterns, where each pattern is a list in one of the following formats:
Ar : A generic Gelfand–Tsetlin pattern for the irreducible representationΛ= [m1n, . . . ,mnn] is[[h1, . . . , hn],

[[m11], [m12,m22], . . . , [m1n, . . . ,mnn]
]]
,

where the componentsmij are given in (34) and[h1, . . . , hn], n= r + 1, is a weight of1(Λ);
Br : A generic Gelfand–Tsetlin pattern for the irreducible representationΛ= [m1 2r, . . . ,mr 2r ] is[[m11], [m12,m22], . . . , [m1 2r−1, . . . ,mr 2r−1], [m1 2r, . . . ,mr 2r ]

]
,

where the componentsmij are given in (45);
Cr : A generic Gelfand–Tsetlin pattern for the irreducible representationΛ= [ω1r , . . . ,ωrr ] is[[h1, . . . , hr ], [σ1, . . . , σr ],

[[ω11], [γ12], . . . , [ω1r , . . . ,ωrr ]
]]
,

where theσi , γij andωij are given in (50) and[h1, . . . , hn] is a weight of1(Λ);
Dr+1: A generic Gelfand–Tsetlin pattern for the irreducible representationΛ= [m1 2r+1, . . . ,mr+1 2r+1] is[[m11], [m12,m22], . . . , [m1 2r, . . . ,mr 2r ], [m1 2r+1, . . . ,mr+1 2r+1]

]
,

where the componentsmij are given in (46).

Example 24. The following command

patterns(′′A′′,2)→ vA2
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writes the procedure vA2 to compute the vectors of a given irreducible representation ofA2. For example, the
Gelfand–Tsetlin vectors of the fundamental representationΛ= [1,0,0] are:

vA2(Λ)→

∣∣∣∣∣1 0 0
1 0

1

∣∣∣∣∣→ λ1= [1,0,0],∣∣∣∣∣1 0 0
1 0

0

∣∣∣∣∣→ λ2= [0,1,0],∣∣∣∣∣1 0 0
0 0

0

∣∣∣∣∣→ λ3= [0,0,1].

Note that the fractions were eliminated in the components of all weights (see Example 14), therefore, before going
to the DYN and SRS bases they have to be rewritten in the FWS’ basis (using the procedure fws2fwsm).

Example 25. The following command

patterns(′′D′′,2)→ vD2

writes the procedure vD2 to compute the vectors of a given irreducible representation ofD2. For example, the
Gelfand–Tsetlin vectors of the fundamental representationΛ= [1,0] are:

vD2(Λ)→|1〉 =
∣∣∣∣∣1 0

1
1

∣∣∣∣∣ , |2〉 =
∣∣∣∣∣1 0

1
0

∣∣∣∣∣ , |3〉 =
∣∣∣∣∣1 0

1
−1

∣∣∣∣∣ , |4〉 =
∣∣∣∣∣1 0

0
0

∣∣∣∣∣ .
Example 26. The following command

patterns(′′C′′,2)→ vC2

writes the procedure vC2 to compute the vectors of a given irreducible representation ofC2. For example, the
Gelfand–Tsetlin vectors of the fundamental representationΛ= [1,0] are:

vC2(Λ)→

|1〉 =

∣∣∣∣∣∣∣
1 0

0 0
0
−1

∣∣∣∣∣∣∣ , |2〉 =
∣∣∣∣∣∣∣
1 0

0 0
0

1

∣∣∣∣∣∣∣ ,
σ1= 0, σ2= 1, σ1= 0, σ2= 1

|3〉 =

∣∣∣∣∣∣∣
1 0

1 −1
1

0

∣∣∣∣∣∣∣ , |4〉 =
∣∣∣∣∣∣∣
1 0

1 1
1

0

∣∣∣∣∣∣∣ ,
σ1= 1, σ2= 0, σ1= 1, σ2= 0.

4.2.2. Matrix elements
The matrix elements for unitary (classical and deformed) and orthogonal algebras can be calculated either

algebraically or numerically.

Unitary algebras
The matrix elements of the generatorsAij of gl(n,R), given in (35) and (36), wherei = j 6 n for the generators

associated with the null roots andj = i + 16 n (i = j + 16 n) for the positive (negative) simple roots, are
calculated by the procedureAme(i, j, |m〉), where|m〉 is an arbitrary Gelfand–Tsetlin vector. Its output is a list
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of lists which have the matrix element in the first positions and the resulting Gelfand–Tsetlin vector in the second
positions.

Example 27. A typical Gelfand–Tsetlin vector of the irreducible representationΛ= [m12,m22] of gl(2,R) in the
chaingl(2,R)⊂ gl(1,R) is

|m〉 =
∣∣∣∣∣m12 m22

m11

∣∣∣∣∣→ [[m11], [m12,m22]
]

(Maple V). (69)

The action of thegl(2,R) elementsA11, A22, A12 andA21 on the generic vector given above is:

Ame(1,1, |m〉)→ [
m11,

[[m11], [m12,m22]
]]

⇒A11|m〉 =m11|m〉,
Ame(2,2, |m〉)→ [

m12+m22−m11,
[[m11], [m12,m22]

]]
⇒A22|m〉 = (m12+m22−m11)|m〉,

Ame(1,2, |m〉)→ [
b1

1(m11),
[[m11+ 1], [m12,m22]

]]
⇒A12|m〉 = b1

1(m11)|m11+ 1〉,
Ame(2,1, |m〉)→ [

b1
1(m11− 1),

[[m11− 1], [m12,m22]
]]

⇒A12|m〉 = b1
1(m11− 1)|m11− 1〉,

where

b1
1(m11)=

{
(m12−m11)(m11−m22+ 1)

}1/2
.

We can use the prescriptions given in (31)–(32) to get the matrix elements ofsl(2,R). Its diagonal generator is
H11= (A11−A22)/2. Note thatH22=−H11. The vector (69) must be changed to

|m′〉 =
∣∣∣∣+j −j

l
,

∣∣∣∣ j = 1
2(m12−m22). (70)

Now, using|m′〉 we have:

Ame(1,1, |m′〉)→ [
l,
[[l], [j,−j ]]]

⇒A11|j l〉 = l |j l〉,
Ame(2,2, |m′〉)→ [−l, [[l], [j,−j ]]]

⇒A22|j l〉 = −l |j l〉,
∴H11|j l〉 = l |j l〉,

Ame(1,2, |m′〉)→ [{
(j − l)(j + l + 1)

}1/2
,
[[l + 1], [j,−j ]]]

⇒A12|j l〉 = {(j − l)(j + l + 1)}1/2|j l + 1〉,
Ame(2,1, |m′〉)→ [{

(j − l + 1)(j + l)}1/2
,
[[l − 1], [j,−j ]]]

⇒A12|j l〉 =
{
(j − l + 1)(j + l)}1/2|j l − 1〉.

The procedurem_jk (|m〉, j, k,p) can be used to modify thejk entry in the Gelfand–Tsetlin vector|m〉 by p:

m_jk(|m〉, j, k,p)→ |mjk + p〉.
For convenience when checking commutation relations, the procedurecommute(A,B) can be used to compute

commutators:
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commute(A,B)→[A,B],
commute(A,B,q)→[A,B]q ≡AB − q AB.

The explicit construction of the irreducible matrices of a particular representation ofgl(n,R) in the canonical
chaingl(n,R)⊂ gl(n−1,R)⊂ · · · is computed by the procedureAim (i, j,M), where the indicesi andj have the
same meaning as explained before, andM is an explicit Gelfand–Tsetlin basis. Its output is a matrix representing
the generatorAij .

Example 28. The Gelfand–Tsetlin vectors of the fundamental representationΛ = [1,0,0] of A2 or gl(3,R) are
given in Example 24. The ordering of the vectors is given by the procedure vA2 as shown in Example 24. The
irreducible matrices for the diagonal operators in the representationΛ are:

Aim(1,1,M)→A11=
(1

0
0

)
,

Aim(2,2,M)→A22=
(0

1
0

)
,

Aim(3,3,M)→A33=
(0

0
1

)
,

whereM is a list containing the Gelfand–Tsetlin vectors computed by the procedure vA2. The non-diagonal
operators associated with the simple roots are represented by

Aim(1,2,M)→A12=
(0 1 0

0 0 0
0 0 0

)
, Aim(2,3,M)→A23=

(0 0 0
0 0 1
0 0 0

)
,

Aim(2,1,M)→A21=
(0 0 0

1 0 0
0 0 0

)
, Aim(3,2,M)→A32=

(0 0 0
0 0 0
0 1 0

)
.

Note that they are the Weyl matrices given in (28) and identical to the matrices calculated in (66)–(67) with
x1= x2= x3= 1. The Cartan–Weyl commutation relations (5) can be verified using the procedure commute:

commute(A12,A21)→A11−A22, commute(A23,A32)→A22−A33, . . .

The q-deformed matrix elements given in (41) and theq-deformed irreducible matrices are calculated using
the deformation parameterq as an optional fourth argument toAme(i, j, |m〉, q) andAim (i, j,M,q), respectively.
The deformation given in (39) is calculated by the procedureqdeform(x, q).

Example 29. Since the Weyl matrices defining thesl(n,R) algebras have only unity elements and the unity is not
deformed, the defining representation is never deformed. Theq-deformed matrices for the adjoint representation
Λ= [2,0] of slq(2) are:

Aim(1,2,M,q)→ qA12=
√[2]q (0 1 0

0 0 1
0 0 0

)
,

Aim(2,1,M,q)→ qA21=
√[2]q (0 0 0

1 0 0
0 1 0

)
,
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whereM, the Gelfand–Tsetlin basis, must be calculated by vA1(Λ) which is written by patterns(′′A ′′,1). The
elements of the Cartan subalgebra are not deformed:

Aim(1,1,M,q)→A11=
(2 0 0

0 1 0
0 0 0

)
, Aim(2,2,M,q)→A22=

(0 0 0
0 1 0
0 0 2

)
.

The deformation of

H1=A11−A22=
(2 0 0

0 0 0
0 0 −2

)
,

is given by

qdeform(H1, q)→[H1]q = [2]q
(1 0 0

0 0 0
0 0 −1

)
.

The defining commutation relations (37) can be checked:

commute(qA12, qA21)→[H1]q, . . .

Orthogonal algebras
The matrix elements of the generatorsXij given in (47) and (48) are calculated by the procedureOme(i, j, |m〉),

wherej = i − 1 and|m〉 is a generic Gelfand–Tsetlin vector. Its output is a list of lists which have the matrix
element in the first positions and the resulting Gelfand–Tsetlin vector in the second positions.

Example 30. A generic Gelfand–Tsetlin vector of an irreducible representationΛ= [m13,m23] of D2∼ so(4) in
the canonical chainD2⊂ B1⊂D1 is

|m〉 =
∣∣∣∣∣m13 m23

m12
m11

∣∣∣∣∣→ [[m11], [m12], [m13,m23]
]

(Maple V). (71)

The generatorX21 is always diagonal:

Ome(2,1, |m〉)→
[[

im11,
[[m11], [m12], [m13,m23]

]]]
⇒X21|m〉 = im11|m〉.

The generatorX32 is a tridiagonal matrix with no diagonal elements:

Ome(3,2, |m〉)→
[[
a1

1(m11),
[[m11+ 1], [m12], [m13,m23]

]]
,[−a1

1(m11− 1),
[[m11− 1], [m12], [m13,m23]

]]]
⇒X32|m〉 = a1

1(m11)|m11+ 1〉 − a1
1(m11− 1)|m11− 1〉,

where

a1
1(m11)= 1

2

{
(m12−m11)(m12+m11+ 1)

}1/2
.

The matrix elements ofX43 are:
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Ome(4,3, |m〉)→
[[
b1

2(m12),
[[m11], [m12+ 1], [m13,m23]

]]
,[

b1
2(m12− 1),

[[m11], [m12− 1], [m13,m23]
]]
,[

ic2,
[[m11], [m12], [m13,m23]

]]]
⇒X43|m〉 = b1

2(m12)|m12+ 1〉 − b1
2(m12− 1)|m12− 1〉 + ic2|m〉,

where

b1
2(m12)=

{
(m12+m11+ 1)(m12+m13+ 2)(m12+m23+ 1)

(m12+ 1)2(2m12+ 3)(2m12+ 1)

}1/2

× {(m12−m11+ 1)(m12−m13)(m12−m23+ 1)
}1/2

,

c2= m11m23(m13+ 1)

m12(m12+ 1)
.

The action of the remaining elements ofD2 can be calculated from (43):

X31= [X32,X21], X42= [X43,X32], X41= [X43,X31] = [X42,X21].

The explicit construction of the irreducible matrices of a particular representation ofso(n) in the canonical
chainso(n)⊂ so(n− 1)⊂ · · · is computed by the procedureOim(i, j,M), wherei = j + 1 andM is an explicit
Gelfand–Tsetlin basis. Its output is a matrix representing the generatorXij .

Example 31. The Gelfand–Tsetlin vectors of the fundamental representationΛ = [1,0] of D2 are given in
Example 25. The ordering of the vectors is given by the procedure vD2 as shown in Example 25. The irreducible
matrices in this representationΛ are:

Oim(2,1,M)→X21= i


1

0
−1

0

= i(A11−A33),

Oim(3,2,M)→X32= 1√
2


0 1 0 0
−1 0 1 0

0 −1 0 0
0 0 0 0

= 1√
2
(A21−A12+A32−A23),

Oim(4,3,M)→X43=


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

= (A24−A42),

whereM is a list containing the Gelfand–Tsetlin vectors computed by the procedure vD2. These matrices are not
in the Cartan–Weyl canonical form given in (5).

Symplectic algebras
The Gelfand–Tsetlin matrix elements of the generators ofC1 andC2 in the chainC2⊂ C1⊕C1 are given in [24]

and they will not be reproduced here. They are calculated using the procedureCme(i, t, |m〉). Its output is a list of
lists which have the matrix elements in the first positions and the resulting Gelfand–Tsetlin vectors in the second
positions. Although this procedure is limited to theC2 case, the matrix elements of some particular generators
can be calculated for the general caseAr : (1) The diagonal operatorsi 6 r and t = 0; (2) TheC1 non-diagonal
operatorsi = r andt =±1; and (3) TheC2 non-diagonal operatorsi = r − 1 andt =±1. In general,i 6 r and
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t = 0 for the elements associated with the null roots, andt = 1 (t = −1) for the positive (negative) roots. The
explicit construction of the irreducible matrices is computed by the procedureCim(i, t,M), whereM is a given
Gelfand–Tsetlin–Cerkaski basis. Its output is a matrix.

Example 32. A typical Gelfand–Tsetlin–Cerkaski vector of an irreducible representationΛ= [ω12,ω22] of C2 in
the chainC2⊂ C1⊕C1 is given by:

|ω〉 =

∣∣∣∣∣∣∣
ω12 ω22

γ12 h2
ω11

h1

∣∣∣∣∣∣∣→
[[h1, h2], [σ1, σ2],

[[ω11], [γ12], [ω12,ω22]
]]

(72)

where

σ1= ω11, σ2= ω12+ω22+ω11− 2γ12.

The matrix element of the operatorE+2 associated with the simple rootα2= [0,2] of C2 is

Cme(2,+1, |ω〉)→
[[
a,
[[h1, h2+ 2], [σ1, σ2],

[[ω11], [γ12], [ω12,ω22]
]]]]

⇒E+2 |ω〉 = a |h2+ 2〉,
a = {1

2(σ2− h2)(σ2+ h2+ 2)
}1/2

.

Example 33. The Gelfand–Tsetlin vectors of the fundamental representationΛ = [1,0] of C2 are given in
Example 26. The ordering of the vectors is given by the procedure vC2 as shown in Example 26. The irreducible
matrices of the generators in the representationΛ are:

Cim(1,0,M)→H1=


0
0
−1

1

 , Cim(2,0,M)→H2=

−1

1
0

0

 ,

Cim(1,1,M)→E+1 =


−1 0
0 0

0 0
0 1

 , Cim(1,−1,M)→E−1 =


0 0
0 1

−1 0
0 0

 ,

Cim(2,1,M)→E+2 =
√

2


0 0
1 0

0 0
0 0

 , Cim(2,−1,M)→E−2 =
√

2


0 1
0 0

0 0
0 0

 ,
whereM is a list containing the Gelfand–Tsetlin vectors computed by the procedure vC2. These matrices are in the
Cartan–Weyl canonical form given in (5). For example, the generatorsE±i are associated with the (simple) roots
±αi , i = 1,2, whereα1= [1,−1] = (2,−1) andα2= [0,2] = (−2,2). Their defining commutation relations are:

commute(E+1 ,E
−
1 )→H1−H2, commute(E+2 ,E

−
2 )→ 2H2.

4.2.3. Eigenvalues of invariants
The eigenvaluesCp(Λ) of the invariants of orderp for classical algebras, given in (56), are calculated by the

procedurespectra(p,Λ,X). The values ofp for the independent invariants are given in Table 1.

Example 34. Thegl(2,R) algebra has one invariant of order one and one of order two. Their eigenvalues in an
irreducible representation given byΛ= [m1,m2] are, respectively:
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spectra(1,Λ,′′A′′)→C1(Λ)=m1+m2,

spectra(2,Λ,′′A′′)→C2(Λ)=m1(m1+ 1)+m2(m2− 1).

The semisimpleAr algebras do not have a linear invariant, therefore,m1 + m2 = 0. Following the prescription
in (32), we haveΛ= [j,−j ] for sl(2,R) and its second order invariant has the eigenvalue:

spectra(2,Λ,′′A′′)→C2(Λ)= 2j (j + 1).

Example 35. TheD2 algebra has two second order invariants whose eigenvalues in an irreducible representation
given byΛ= [m1,m2] are:

spectra(2,Λ,′′D′′)→C2(Λ)= 2m1(m1+ 2)+ 2m2
2,

spectra(4,Λ,′′D′′)→C′2(Λ)=−8m2(m1+ 1).

Note thatp = 2r must be used in the procedure spectra for the eigenvalue ofC′r . The eigenvaluesCp calculated
with p being odd are not linearly independent:

spectra(1,Λ,′′D′′)→C1(Λ)= 0,

spectra(3,Λ,′′D′′)→C3(Λ)= C′2(Λ).
It is interesting to calculate the eigenvalue of the Casimir operator (second order invariant) using the procedure
casimir. Before doing that, the highest weightΛ must be rewritten in the DYN basis:Λ = [m1,m2] = (m1 +
m2,m1−m2). Therefore,

casimir(Λ,′′D′′)→m1(m1+ 2)+m2
2= 1

2C2(Λ).

5. Installation

The KILLING package was written using the Maple V (Release 5) and Mathematica (Release 3) algebraic
programming softwares. Therefore, it can be used in any operational system which has Maple V or Mathematica
installed. The source codes come in the following directory structure:

$Root/killing/maple/src

$Root/killing/maple/lib

$Root/killing/maple/help

$Root/killing/math/src

$Root/killing/math/Files

$Root/killing/math/Files/Addons/Applications/Killing

$Root/killing/math/Files/Addons/Applications/Killing/Kernel

$Root/killing/math/Files/English/Addons/Applications/Killing

where $Root represents the absolute path where the KILLING files are installed.
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5.1. Installation under Maple V

The following steps are necessary for a manual installation of the KILLING package under Maple V (Release 5):
(1) Execute the Maple V worksheet

$Root/killing/maple/make.mws

in order to compile all procedures in the KILLING package. The output is written in the binary file

$Root/killing/maple/lib/killing .m

The output is controlled by the ASCII file

$Root/killing/maple/killing

(2) Execute the Maple V worksheet

$Root/killing/maple/help/make.mws

in order to generate the online help files. The output is written in the binary file

$Root/killing/maple/lib/maple.hdb

(3) The following line

libname:= ‘$Root/killing/maple/lib’ , libname;
must be added to the Maple V initialization file in order to have the KILLING package loaded in a Maple V
session by

with(Killing );
It is important here that the absolute path indicating where the fileskilling.m andmaple.hdb are
located, comes before the Maple V library path given bylibname ;

(4) One alternative to the previous step is to redefine the Maple V library search path given bylibname , as in
step (3) above, for each Maple V session.

The Maple V initialization file under Microsoft Windows is namedmaple.ini and should be placed in one of
the Maple V subdirectories, eitherlib or update . For case in which there is a Maple V subdirectoryupdate ,
then the initialization filemaple.ini must be created (or modified) there.

5.2. Installation under Mathematica

The KILLING package can be loaded in two ways: (1) using the ASCII file

$Root/killing/math/src/killing

to load all functions inside a Mathematica session («killing ); or (2) using the files under

$Root/killing/math/Files

to install it as an Add-On application. This is accomplished by the following steps:
(1) Copy the subdirectory

$Root/killing/math/Files/Addons/Applications/Killing

and its contents to

$RootMath/Files/Addons/Applications/Killing
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where$RootMath is the root of the Mathematica directory tree in single user systems or a user relative
path for the Add-On subdirectories in multiple user systems. The KILLING functions must first be declared
as stub functions by typing “«Killing‘ ”, the full package is loaded when one of the functions is used for
the first time;

(2) Copy the subdirectory

$Root/killing/math/Files/English/Addons/Applications/Killing

and its contents to

$RootMath/Files/Documentation/English/Addons/Applications/Killing

This installs the online help files. In order to add an entry to the Add On radio button to the Help Browser,
the ASCII fileBrowserCategories.m

$RootMath/Files/Documentation/English/Addons/

must be modified to include the path for the KILLING help files. There is a commented sample in

$Root/killing/math/Files/English/Addons/

(3) Rebuild the Mathematica help index using the Help menuRebuild Help Index button.
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