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Method of solution Typical running time

In spite of the high level of knowledge about the representation the- Under one minute for each procedure except for the multiplicities
ory of semisimple Lie algebras, the manipulation of elements such determination procedures.

as roots, weights and matrices is very difficult for the non-trivial

cases. The goal in writing this package is to make possible the han- References

dling of several elements of the theory of representation of Lie alge- [1] J.-Q. Chen, Group Representation Theory for Physicists (World
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and augment every code. A great deal of flexibility is achieved by [2] B.G. Wybourne, Classical groups for Physicists (John Wiley,
choosing the algebraic programming scenario in which huge sets of 1974).

weights and complicated algebraic matrix elements can be handled [3] A.0. Barut, R. Razcka, Theory of Group Representations and

in an interactive way. Applications (World Scientific, Singapore, 1986).
o _ [4] L.C. Biedenharn, M.A. Lohe, Quantum Group Symmetry and
Restrictions on the complexity of the problem g-Tensor Algebras (World Scientific, Singapore, 1995).

Until now, the Gelfand-Tsetlin method has been restricted to classi- [5] J. Fuchs, Affine Lie Algebras and Quantum Groups (Cambridge,
cal orthogonal algebras, and to classical and deformed unitary alge- 1995).

bras, and to the classical symplectic algebra of rank two.

1. Introduction

Symmetry has been a very important fundamental principle underlying human knowledge about our physical
world. Among several mathematical formulations of symmetry, the Lie algebras and their corresponding Lie groups
are probably the ones most explored [1-5]. They were discovered by Sophus Lie and Wilhelm Killing during the
last two decades of the 19th century. Lie’s work on Lie groups was inspired by Galois’ work in 1832 in which
he discovered the finite groups. Independently, Killing had started a classification of Lie groups, which was the
starting point for Elie Cartan’s doctoral thesis at the beginning of the 20th century [6]. Cartan was able to make a
complete classification of Lie groups. Since Cartan’s classification, the theory of Lie groups has been utilized in
many branches of physics, including molecular physics [7-9], atomic physics [10], nuclear physics [11,8], particle
physics [12,13], dynamical systems [14—16] and molecular genetics [17-19].

In regard to physical applications, roots and weights play a special role in the classification of the Lie algebras
and their irreducible representations, respectively. The typical use of representations in physics can be summarized
as follows [20]. In general, each vector in an irreducible representation of a Lie algebra is identified by one set of
weight vectors. When the physically observable operators of a given physical quantum system can be constructed
from the elements of the algebra, the components of the weight vectors can be identified with the physical quantum
numbers.

Therefore, one very important task is to know how to write the matrix elements of all elements in a given algebra
explicitly in terms of the components of the weight vectors in a given irreducible representation. While there is a
general program to calculate roots and weights for all semisimple Lie algebras [2,5], there are only partial methods
to obtain the matrix elements. One very important method is the Gelfand—Tsetlin method for orthogonal [21,4] and
unitary [22,4] Lie algebras. Unfortunately, there is not an equivalent method for the exceptional and symplectic
algebras in general [23,24].

In spite of the high level of knowledge about the representation theory of semisimple Lie algebras, the
manipulation of elements such as roots, weights and matrix elements by hand is very difficult for non-trivial cases.
The goal in writing the KLLING package is to make possible the handling of several elements of the theory of
representation of Lie algebras in a convenient way. This package is intended to be helpful to students, teachers and
researchers using Lie algebras. It grew out of several algebraic routines developed at The Institute of Physics of Sao
Carlos, University of Sdo Paulo, as computational tools to understand and apply Lie algebras in physical systems.
Now, the first part of the KLLING package (Roots & Weights Formalism) covers the analytical results in the first
15 chapters of Wybourne’s book [2], the first chapter of Barut and Raczka’s book [4], and Chapter 5 of Chen’s [5]
book on which some of the codes are based. The second part, the Gelfand—Tsetlin method, covers Chapters 9-10
of Barut and Raczka'’s book [4] on which the other codes are based.
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The KILLING package is an extension and a complement to the existing packages written in Maple V [25]
(www.maplesoft.com ) and Mathematica [26]www.wolfram.com ) symbolic languages. The following
Maple V packages, Coxeter/Weyl by John R. Stembridge, and Crystal by David Joyner, Roland Martin and Michael
Foute, and Dynkin by David Joyner, all described in the Maple V share library, can be used to compute roots and
weights (including multiplicities), to draw Dynkin diagrams, to plot weight systems and to write the structure
constants and the defining matrices. They also can be used to decompose the tensor product of fundamental
irreducible representations. General algebraic properties of the theory of representation of Lie groups can be
handled by routines written by Feinsilver and Schott [27].

The GAP algebraic language is an important free software devoted to group theory in general. It is maintained by
The GAP Group at Lehrstuhl D fur Mathematik, Rheinisch-Westfélische Technische Hochschule Aachen (LDFM/
RWTHA), Germany www.math.rwth-aachen.de/~gap/ ), and by The School of Mathematical and Com-
putational Sciences, University of St. Andrews, Scotlamsvnf/-history.mcs.st-and.ac.uk/~gap/ ).

It has a set of routines dedicated to algebraic properties of Lie algebras. There are also two other packages
which extend the capabilities of the GAP functions on Lie algebras: (1) the LAG package by Richard Ross-
manith, documented in the GAP share library; and (2) the CHEVIE package developed at LDFM/RWTHA
(www.math.rwth-aachen.de/ldfm/homes/chevie/ ). The Chevie package also has a Maple V version
dedicated to the construction of character tables. These GAP routines can also be used to compute roots and weights
and character tables.

There are at least four other interactive systems written specially to perform computations on analytical
results in the theory of representations of Lie algebras. There is the Symmetrica package developed at
The Mathematics Department, University of Bayreuth, Germamyvw.math2.uni-bayreuth.de ). Itis
a collection of C routines which can be used as basic structures for more specific programs. The SimpLie
software (www.crm.umontreal.ca/~rand/simplie ) by Moody, Patera [28,29] and Rand [30] and the
LiE software by van Leeuwen [31jallis.univ-poiliers.fr/~maavl/lie/ ) can be used to compute
branching rules, weight multiplicities and tensor product decompositions very efficiently. The LIE software
is also an algebraic software. They are free softwares. The commercial software Schur, by Wybourne [32]
(www.phys.uni-torun.pl/~bgw/schur ), adds the properties of symmetric functions to the capabilities
of the former packages.

The KILLING package brings most of the analytical capabilities of the existing packages concerning roots and
weights to Maple V and Mathematica users. It also adds some enhancements or complements to the roots and
weights formalism by allowing basis exchanges in the weight space [5], and it adds the explicit construction of
irreducible matrices through the Gelfand-Tsetlin method [4].

2. Elements of the representation theory of Lie algebras

Although the theory of Lie algebras is well explained in many excellent text books, we reproduce here a few
definitions and theorems concerning the representation theory in order to make it a readable text. Refs. [1-5] can
be used for further information. The classification of Lie algebras and their irreducible representations is presented
in Section 2.1 and the explicit construction of the irreducible matrices is presented in Section 2.2.

2.1. Roots and weights

We recall a non-associative algebra as just a vector spacevhich the bilinear composition (internal product)
xy=[x,y]— z, x,y,z € L, can be defined. A Lie algebra is a non-associative algekirawhich the internal
product (or Lie product) satisfies

[x»)’]:_[y,x]» (1)
[x, [y, 21] + [z, [x, 1] + [y, [z, x]] = O, )
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wherex, v, z € L. The last condition is known as Jacobi identity. The Lie product can assume more than one form.
For example, when the elementsy of L can be represented by matrices then the Lie product can be defined as
the usual commutatgx, y] = xy — yx.

An algebra is said to be Abelian if (symbolically)., L] = 0. A subspacel of L is an ideal ofL if
[L,I]1C I. An ideal is an invariant subspace. An algeliras solvable if L™ = 0 for some integer in the
seriesL =L@ > LD > L@ 5... whereL® = [L*-D [*=D] Each new subalgeb®&a® is an ideal ofL.

A radical of L is the solvable ideal of maximum dimensionalitylofIf L has no non-zero radical, then it is called
semisimple. When the non-Abelian algelirdas no ideals, besides 0 ahdtself, it is called simple. There is a
complete classification for all semisimple and simple Lie algebras as well for their irreducible representations.

In general, a finite Lie algebra can be defined by giving all commutation relations among the elements of a
chosen basis;:

[xi, xj1= cijixk, (3

where the numbers;; are known as the structure constants. A canonical form for the commutation relations and
matrices representing the elements of a Lie algebra, that is, matrices satisfying the defining commutation relations,
can be found. The possibility of determining these matrices means that a vector space with a finite basis and a set of
linear operators acting on it, representing the abstract elements of a Lie algebra, can always be found. The simplest
example is given when the elemeisandY of a Lie algebra can simultaneously be seen as vectors in an abstract
vector space and as the linear operators acting on it. The action of an opéiatarvectorY is defined by

XY =[X,Y]. 4)

This particular representation is called the adjoint representation. It is irreducible, that is, there is no linear
transformation that can simultaneously bring all matrices in this representation to a block diagonal form (there
is no invariant subspace). From the adjoint representation, it can be shown that a canonical form (the Cartan—Weyl
canonical form) for the commutation relations can be written as follows:

[H;, H;]=0,
[Hi, Eq;] = ()i Eq;,
- (5)
[Eqyr E—oi] =Y (ei)iHi,
k=1
[Eq. Eﬁ]:NaﬁEa—&-ﬂ’
where
0 if B =—a,
Neg=10 fa+p¢x,
+{g(p+D/Na}t? a+pes,
2
Ny = —, 6
|or|2 (6)

p=m, m>0, —maeX, B—(m+Da¢X,
g=m,m>0, B+maeX, B+(m+Da¢ X,

The numberge;); are the eigenvalues of the operatéfg, as it can be seen from (4) and (5). These numbers
form anr-dimensional vectow = [(@)1, .. ., (@), ] called a root or a weight of the adjoint representation, and they
form a vector space called root space. The notatiea[(«)1, ..., (@),] using square brackets is called Cartan—
Weyl labeling, and the roak is said to be in the Fundamental Weight System (FWS) basis. The geometrical
meaning of the FWS basis will be clear later in this subsection. Since the roots label the eigenvectors of the adjoint
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representation, one root corresponds to each element in the algebra. The Abelian algebra formed by the elements
H;, corresponding to the null roots, is called Cartan subalgebra. There are only roots and they are only
associated with the operatoks. The set of all roots is called root systel and each Lie algebra has its own
root system. Two algebras with the same root system are said to be isomorphics. The dimension of the adjoint
representation is the dimension of the algebra itself, and the degeneracy of defjthe null root is the rank of
the algebra.

In the commutation relations (5), there are onliinearly independent roots() called simple rootg7. They
spawn a root space of dimensienThis natural basis is called Simple Root System (SRS) basis. An arbitrary root
a inthe SRS basis is denoted by using brages:{(«)1, ..., (@), }. The root space is very restrictive. For example,
(1) There are only roots of two lengths; (2) The multiples of a waire only+«; (3) The angles between two
arbitrary roots are only 90120, 135, 150, or 180C. One root is said to be positive (negative) if its first non-zero
component is positive (negative) in some given basis. The set of all positive roots is dendied by

Another useful canonical form for the commutation relations of Lie algebras is the Chevalley form. It can be
written as follows:

[hi, h ]l =0, i<k<r,
[hi, ex] = +Ajkex,
iy fi] = —Aix fk,

(7)
lei, fil = dikhi,
lea,egl =E£(p + Degip,
p=m, m>0, —maeX, B—(m+Da¢X,
whereA is the Cartan matrix whose elements are
2
Ajj = Nia; -aj, Ni=—| 2 iSjsr, (8
o

ande; - «; is the scalar product. From (7) and (8), we have another basis for the root space: the Dynkin (DYN)
basis. The componen); of an arbitrary rootr in the DYN basis is given by

2

(@)i =Nijaj -, Ni=—5,
| |

9)

where «; is a simple root. An arbitrary root in the DYN basis is denoted by using parentheses:

()1, ..., (a);). In particular, the simple roots are the columns of the Cartan matrix. The geometrical meaning
of the DYN basis will be clear later in this subsection. The half sum of the positive roots (Weyl vector) in the DYN
basis, for every Lie algebra, is:

p=> a=(11...1). (10)

a>0

Every Lie algebra can be defined by its Cartan matrix or by its Dynkin diagrams, which can be constructed from
the Cartan matrix and vice-versa. The Dynkin diagrams constitute a useful graphical way to classify simple Lie
algebras. In a Dynkin diagram, each pair of simple roots making anglesp120, 135 or 150 are joined by O,

1, 2, and 3 straight lines, respectively. The number of lines joining the simpleapatsle; in the Cartan matrix

A is given by

number of lines= A;;A ;. (11)
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There are only two lengths for roots: the longer ones (represented by open circles) are double the length of the
shorter ones (filled circles). The ratio between their lengths is given by
2 y
| | _ A]l ' (12)
laj|?2  Ajj
The Dynkin diagrams play a special role in the classification of all possible finite Lie algebras. There are four major
families of rankr finite complex simple Lie algebras. They are denotedibyof dimension(r + 1)2 — 1; B,, of
dimension(2r + 1); C,, of dimension-(2r + 1); and D, of dimension(2r — 1). Besides these four types, there
are only five other (exceptional) finite complex simple Lie algebras:of dimension 52;F, of dimension 78;
E7, of dimension 133;Eg, of dimension 248; and;, of dimension 14. Thed, algebra is isomorphic to the
complex algebra of the x n traceless matricesl(n, C), n = r + 1. Two well-known (real) subalgebras are
sl(n, R) and the special unitary algebsan) consisting of anti-Hermitian traceless matrices. Theand D,
algebras are isomorphics to the complex algebra formed by anti-symmetric traceless matrices of-eriem2i
2r, so(2r + 1, C) andso(2r, C), respectively. They are called orthogonal algebras. Thalgebra is isomorphic
to the complex symplectic algebsa(2r, C).
The basic ideas from the adjoint representation can be generalized in order to classify the irreducible
representations. Suppope are vectors of an arbitrary irreducible representation. Then they can be labeled by
the eigenvalues; of the commuting elementd; of the Cartan subalgebra:

Hi[A) =2ilA), i< 13)

The eigenvalues; are the components of a vectorcalled the weight vector, corresponding to the eigenvector

|A). At least one weight corresponds to each vector of the representation. The non-degenerate weights are called
simple. The positiveness (negativeness) of a weight is defined in the same way it was defined for roots. A weight
A1 is said to be higher thahp, wheni1 — Ay is positive. There is one, and only one, simple highest weight for
each irreducible representation. This means that two irreducible representations with the same highest weights are
isomorphic. The components of a highest weight in the DYN basis are all non-negative integers. Weights can also
be used to give the general shape of the matrices of an arbitrary irreducible representatiogi )_eenote the

system of weightg. of an irreducible representation given by the simple highest welgHthen,

Eo M) o A +a), ifA+aeA(A),
Eq|A) =0, if A+ ¢ A(A),

(14)

where« is a root. The element&, are known as step (or ladder) operators. Weights, as roots, spawn an
dimensional vector space. The same three bases for roots can be used for weights. The DYN basis is formed by
the basic irreducible representatiais = (1,0, ...,0),..., M, = (0,0, ..., 1). It is non-orthogonal and dual to

the SRS basis. The DYN and SRS bases can be defined for all classical and exceptional Lie algebras. The FWS
basis is formed by the positive weights of the defining fundamental representation (the lowest-dimensional basic
irreducible representation). It is orthonormal for the classitaD algebras and unique for the classidatD

algebras. The exchange of bases among the DYN, SRS and FWS bases can be summarized as follows [5, Ch. 5]:

(w)pyn = A {v}srs (15)
(u)pyn = W [v]Fws, (16)
[ulrws= R {v}srs (17

whereA are the Cartan matrices, whose columns are the simple roots in the DY NWaasis;the weights matrices,
whose columns are the positive weights of the fundamental representation in the DYN bagtsasnthe root
matrices, whose columns are the simple roots in the FWS basis. While the Cartan matrices are unique for any Lie
algebra, the weight and root matrices are not unique for the exceptional algebras [33] algebras [5, Ch. 5].
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The FWS basis foA, deserves some comment [5, Ch. 5]. The compongrdsany weightv in the FWS basis
for A, algebras are not linearly independent and they can be negative integers or fractions. This means that there
are more vectors among the weightsof the fundamental representatibhy than necessary. In fact, there are
r + 1 vectorsh;. The usual condition to ensure uniqueness of the FWS basis is

r+1

> x=0. (18)
i=1

Therefore we have another basis for the weightd pohlgebras: the modified-FWS basis, or F\MB8hose basis
vectors aré.q, ..., A,. The components in these two bases are related by:

FWS __ . FWS FWS
v; =v; = (19)

The transformation relations for the DYN and SRS bases are [5, Ch. 5]:

(w)pyN = W [vlpwg, W =W, (20)
{u}srs= R vlpws. R T=RW. (21)

An equivalence relation can be defined for weights in such a way to be useful in determining the weight
multiplicities. Two weightsi1 andio are said to be equivalents if

2

A2=2A1— Ny (A1-a)a, Ny = —35,
||

(22)
wherea is an arbitrary root. The weight; is the image of the weighit; with respect to the (Weyl) reflection
plane perpendicular the roat through the origin. The set of Weyl reflections associated with the simple roots
forms a finite group called the Weyl or Weyl-Coxeter reflection group. Equivalent weights belong to the same
representation and have the same multiplicity. The highest weight in a set of equivalent weights is called the
dominant weight.

Another interesting feature of weights is that they can be grouped into layers. beta weight of the
representatiom, then the layer indeX (1) of A is

L)) = 3[8(A) —8W)], (23)

wheres (1) is the power (or level) of.

S =2 (M. (24)
i=1
and {A}; represents the components ofin the SRS basis. The number of layers is called the height of the
representation, and it is given B A) + 1. The layer index’ (1) represents the number of simple roots that
have to be subtracted from the highest weighih order to have..
The multiplicity n, of a weight in a representationt can be calculated recursively by the Freudenthal formula:

(Ca—Com=2)_ Y O+ka):amiiia; (25)
a>0k=12,...
where
Cr=h-(1+2p). (26)

In (25) the sum irk stops when. + ko > A. Despite a numerical factot, 4 is the eigenvalue of the second order
invariant operators or the Casimir operators.
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The dimension of an irreducible representatibean be calculated by the Weyl formula:

dim(4)=3" %}:p), (27)

a>0

whereq is a positive root ang is the Weyl vector (half the sum of the positive roots) given in (10).
2.2. Irreducible matrices

While the roots and weights formalism is a powerful tool to classify Lie algebras and their irreducible
representations, it does not provide us enough information to perform the explicit construction of the irreducible
matrices. Theorem (14), for example, tells us when the matrix elements must be zero (selection rules), but it does
not tell us about the value of the non-zero matrix elements. This means that we have to look for the weight systems
of the subalgebras; of a Lie algebral.,, L > Ly D Ly D ---, in order to complete the information needed to
construct the irreducible matrices bf

One very important problem is to know how to compute the weight systems of the irreducible representations
of the subalgebra&; from the highest weight of an arbitrary irreducible representatioi.of he solution to
this problem is known as the branching rules. In general, an irreducible representation of a given subalgebra can
be degenerate, that is, it can be present several times in an irreducible representatidvihain the irreducible
representations of all subalgebrasin a given chainL > L1 D> Lz D --- have no degeneracy, that is, they are
multiplicity free, the chain is said to be canonical. The chaips A,_1 > ---andB, D D, D B,_1 D Dy_1D -
are canonical chains and their branching rules are known analytically [4]. For the symplectic algebras, the branching
rules for the non-canonical chaify > C,_1 & C1 D - - - are known analytically [34]. The branching rules for many
other chains can be found numerically [28,30].

In general, each Lie algebra of rankasr invariant operators. These operators commute with any element of the
algebra. They are polynomials in the elements of the algebra and, therefore, they do not belong to the algebra itself.
Their eigenvalues can be calculated from the highest weight components of an arbitrary irreducible representation
for any Lie algebra. The physical meaning of these invariants is that the observables in a quantum system can be
functions of invariants. In that way, physical quantum numbers can be made to correspond with weights [20].

2.2.1. The Gelfand-Tsetlin method
We reproduce here the basic results from the Gelfand—Tsetlin formalism for unitary and orthogonal algebras [4,
Chs. 9-10] as well partial results for symplectic algebras [34,24].

Unitary algebras

Let gl(n, R) be the general (linear) Lie algebra formed by all matrices of ordefThis algebra can be
decomposed agl(n, R) = I & sl(n, R), where[ is the Abelian algebra formed by the matrices proportional to
the identity andsl(z, R) is the (special linear) Lie algebra formed by the traceless matrices. The special linear
algebrasl(n, R) and the special unitary algebsa(n) are both real forms ofA,, n =r + 1. One important fact
to be used in the construction of the matrix elements for the unitary algebras is that one arbitrary irreducible
representation ajl(z, R) induces one irreducible representatiorstsf, R) andsu(n).

Then defining matrices ofjl(n) are given by the Weyl matrices;; :

(Aij = 8ikd ji, AiNt=Aj. (28)
They obey the following commutation relation:
[Ajj, Al =8k Air — i1 Akj. (29)

The commutingd;; matrices are associated with the null roots, and the matdgeA ;) with j > i are associated
with the positive (negative) roots. In general, because of

Ak—nk =[Ar—nk-1, Ar—1x], (30)
we do not need to construct the matrix elements of all non-diagonal elemgntsut for A;;11 only.
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The algebral(n, R) can be formed bw;;, A;;, and byH;; = A;; — Ai41i41 Of
1 n

H:=A:—Z

il All " Z Aklw (31)
k=1
with the highest weighi = [m1,,, m2,, ..., my,] changed to
1 n

A§=Ai—;;l/1k. (32)

The unitary algebraun) is given byH;;, A;; — Aj; and (A;; + Aji).
Each finite-dimensional irreducible representationloé, R), and also ofd,,_1, is given by a highest weight
which, in the FWS basis, can always assume the form

A=[my, +w,mh, +w,...,m,, +w]
(33)

=[my,, moy, ..., mp,l, min >mi+l,n>0, n=r+1,

wherew is an arbitrary constant and the componenmts are non-negative integers. Each vector of the irreducible
representation (33) in the canonical chglz) > gl(n — 1) D --- D gl(1) or, equivalentlysl(n) > sl(n — 1) D
--- D sl(2), is given by the following Gelfand—Tsetlin pattern:

min man cee Mp—_1n Mpn

(34)

Mip 2 Mip—1 2 Mit1y.

Each line of (34) characterizes one irreducible representation of a subalgebra. The matrix elemgrassogiven
by

Arklm) = (re — re—1)|m),

k—1
Ak-1klm) =} bj_g(m)|mir-1+1),
k—1
Axk—alm) =" " ap_q(m)|mix-1—1),
i=1
where
k
rk=zmz'k, ro=0, 1<k<n,
i=1
al (m)= {_ Ty ik — L+ DT Uiz — Li—1) }1/2
o ]_[f-;j Uik = Ljk—1+ D ik — jr-1) (36)
bl (m) = {_ [Toalix = LD [Tf Uik—2—ljx-1—1) }1/2
ot T ik — -0 ik — L1 — D)
lik =mik — 1.

The matrix elements andb in (36) are all real numbers an[d,-j)‘ =Aj.
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The generators of thg-deformed (or “quantum group’$l, (n) algebra satisfy the following commutation
relations [35,36]:

[H;, H;]=0,
(37)
[Aiiv1, Aiv1i]l = [Hilg,
where
Hi = Aji — Ait1i+1, (38)
and
g —q™" _ sinh(zx)
= = N = . 39
Lxlq q—q1 sinh(z) q = exp(z) (39)
Note that the deformation defined above has the following properties:
[—x]; = —[xlg.
[x]1/4 = [x]g,
(1, =1,
{;iLnl[x]q =x.

When|qg| # 1 then the irreducible representations of the deformed algebras are classified by the roots and weights
formalism as well. The irreduciblg-deformed matrix elements fal, (1) are given by the same formulae (35)
with ¢g-deformed terms [35,37]:

;i {_ [Tioa ik — Ljk—1 + Dg TEZflUik—2 — Ljk-)]g }1/2

1= T
i Uik = i1+ Dl ik = Lik-1g (41)
bl{ 1= {_ Hf:l[(lik - ljk—l)]q Hf‘{;lz[(lik—z — lj k-1 — 1)](1 }1/2'

[T [k = LDy [k — Ljx—1— D],

Orthogonal algebras
The orthogonal algebras(n) formed by anti-symmetric matrices are real formsBpf n = 2r + 1, andD,,
n = 2r. An elementX;; of an orthogonal algebra can be written as

Xij = Aij — Aji, Xip)'=—Xij, (42)
whereA;; are the Weyl matrices given in (28). Their commutation relations are:
[(Xik, Xim] = k1 Xim ~+ S8im Xt — Sk Xi1 — i1 Xkem.- (43)

Unfortunately, these commutation relations are not in the Cartan—Weyl canonical form.
The irreducible representations &d(n) can be given by the following highest weights with integral or half-
integral components:

A=[mig,...,mix], n=2k+1, By,
mig =mp = =mio =0, (a4)
A=mixg2,....,mry1242], n=2(k+1), Diy,

M1k42 = M2 %42 = -+ = [mpg12n42|.
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Each basis vector in the canonical chaow) D san — 1) D --- D s0(2) is given by the Gelfand—Tsetlin pattern

mai 2k ma cee o M1 My 2k
miox—1 Mmaok—1 ... Mp_12%-1 M 2k—1
mio—2 e Mp—12k—2
m1 2k—3 mi—12k—3
) = | e e e e ,
miq ma4
mi3 m23
mai2 (45)
mi1
M1 = M12%—1 2= M22% 2 M22%k—1 = -
ZMp—12% 2 Mp—12%—1 = Mg 2k = M %k—1 = —Mg2k,
M12k—1 2 M12%k—2 2 M22%—1 2 *+*
Z Mg 1212 Mp_12%—2 = |mi2x—1l,

forn=2k+1, and

m3i 2k+1 m22k+1 ... ME2k+1 Mp+12+1
mi ok mp 2k
myok—1 my2k—1
|m) = mis mas m3q ,

mi4 ma4 (46)

mi3 m23
mi2
mi1

MLl = MU 2= M2 U4l =+ + = M 2kl = M2k = M1 2%+1l,
mo ok

miox = mi2k—1 Z e Z Mgk = Mi2k—1 2 — Mg 2%,

for n = 2(k + 1). The matrix elements of an¥;; can be found using (43) if the matrix elementsXf, 112,
p=L12...[(n-=1/2],andX2, 22541, p=0,1,...,[(n — 2)/2], are known:

k
Xoxy2,241lm) =Y by (m)lm o + 1)
j=1
k

- Zbék(mj%)lmjzk — 1) +ico|m),
T (47)
Xopt1,2¢|lm) = chék_l(mﬂmj 2%-1+1)

j=1
k

— > ad y(mjza)|mjzn-1—1),
j=1
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where

; 1
a1 (m) = 2

[l ai—2 — L1 — Dl oi—2 + 1 2u—1) }1/2
lec;éj oy q — 112'2k—1) (2o — U1+ 1)?)

k 1/2
X {H(erk —ljok—1—D 2 +lj2k—1)} ,
r=1
k k+1
i 1 i oy = 50 TH oy — 520) vz (48)
by (m) = 2] 72 2 k2 2 2_ g2
o @5 = DT o = 20 (Urax = D2 = 155)
k k+1
cor(m) = | l_[r:l lr 241

[Ty bkl — 1)
Lok=mpop+k—r+1 Ly 1=myp_1+k—r.

Symplectic algebras
The finite irreducible representations@f (or sp(2r)) are given by the integral components of the highest weight

A=lwy,wo,...,0n], w1202 =20, =0 (49)

Each basis vector in the non-canonical ch@jn> C,—1 © C1 D --- is given by the Gelfand-Tsetlin—Cerkaski
pattern [34]:

w1y w2y . W1y Wy r

712 h2 (50)

Wik 2 Yik Z Oit1ks  Ykk+1 2 Okk 2 Pk,
thUk,Uk _27-'-7_Gk7
where
k
Pk = Vkk+1 — Ok+1k+1 + Z(zyi+lk+l — Wit1k+1 — Wik),
k-1 = (1)
ok =ik + Y (@ik + k-1 — 2¥ik)-
i=1
In (50), w; ,—;, are the components of the highest weighttpf , and[h1, ..., k] are the weights of the weight
systemA (A) in the FWS basis. The highest weights of thealgebras are given by in (51).

Unfortunately, there are no general formulae for the matrix elemerts afgebras [38,34,39,24]. The following
notation

Eio— nullroots i<,
E; . — positive roots (52)

E; _ — negative roots
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Table 1
Independent invariants,, for classical Lie algebras

p o B i i
Ay 2.3,...,r /2 0 (r+2/2—i 1,2,....r+1
B, 2.4,....20rn = 1), r r—1/2 1 r+1/2)8 —i 1,...,n0,—r ..., —1
Cr 2,4,...,2r r -1 (r+Le; —i 1,..., [ -1
D, 2,4,...,2r r—1 1 re; —i 1,..., [ -1

for the generator&;, of C,, comes from [24] where the matrix elements®fandC, were calculated directly in
the chainCy c C1 @ C; satisfying the Cartan—Weyl commutation relations.

Invariant operators
In general, there is a set pfinearly independent self-commuting invariant operatty$or each Lie algebra of
rankr. They are polynomials of degreen the algebra elements and commute with all elements of a Lie aldebra

[Cp, L]1=0. (53)
Therefore, they must be multiples of the identity operdtam a given irreducible representation:
Cp,=C,I, (54)

whereC, is the eigenvalue af,,. The set of independent invariants of classical algebras are given in Table 1. Their
corresponding eigenvalues, in terms of the components of the highest weight (in the FWS basis),

A=[mq,...,mr41], m; >mir1 >0, forA,, (55)
A=[m1,...,m,] forB,, C,andD,,
are given by [4, Ch. 9]
Cp(A) =Tr(KPE), (56)
where
Ej=1,
Kij = (i +)8ij — 0ji + 3L+ €8 . (57)
li=mji+ri,
and
Qijz{é Ig:j;i’, & = g.) Ig::g, (58)
1 fori<O.

The constanta, 8 andr; are given in Table 1.

3. Structure of the KILLING package

Every algebraic procedure in thellKING package has the same name and the same arguments in the
Maple V [25] and Mathematica [26] environments. The only difference in the syntax is that parentheses are used
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in Maple V to specify the arguments of a function instead of the brackets used in Mathematica. For example, in
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Maple V we have rs(A,3) whereas in Mathematica it is written rs[A,3].

In both environments, the name X of each family of Lie algebras is a string and must be surrounded by
double quotes:’{A”, "B”,"C","D”,"E","F’, "G"}. The corresponding rank is designated/hyAn irreducible
representation is indicated by and a weight (or root) by. The root system is indicated by, the positive roots

by ¥, and the simple roots hjf .

In the first part (The Roots & Weights formalism), all input and output weights (and roots) are in the DYN basis,
unless it is clear from the context that they are not. In the second part (The Gelfand-Tsetlin method), all input and

output weights (and roots) are in the FWS basis.

3.1.

The Roots & Weights formalism

3.1.1. Computing weights and roots
e bi(r) — basic irreducible representatiolis

irrdim (A, X) — irreducible representation dimensions
ws(A, X) — weight systemA (A)

wsm(A, X) — multiplicities in A(A)

power(A, X) — power (or level) (A)

layer(x, A, X) — layer indexL (1) in A(A)

rs(X, r) — root systemy

sr(X, r) — simple rootsl7

check X) — p, X7 (p is the half sum ofz )

algdim(X, r) — algebra dimension

3.1.2. Exchanging bases in the weight space

dyn2srgi, X) — ADYN — ASRS

dyn2fws(x, X) — Apyn — Arws (classical algebras only)
dyn2fwsm(i, X) — Apyn = Apwg (A, algebras only)

fws2dyn(x, X) — Arws — Apyn (classical algebras only)
fws2srq), X) — Arpws — Asrs(classical algebras only)
fws2fwgA) — Arws — Arws (A, algebras only)

fws2fwsm(1) — Arws — Arws (A, algebras only)

srs2dyn(i, X) — Asrs— ADYN

srs2fwqA, X) — Asrs— Arws (classical algebras only)
srs2fwsm(i, X) — Asrs— Apws (A, algebras only)

Cm(X, r) — Cartan matriceg\

Wm(X, r) — Weight matriced¥ (classical algebras only)

Rm(X, r) — Root matricesk (classical algebras only)

Cm(X, r,”inv") — inverse Cartan matrices

Wm(X, r,"inv’) — inverse Weight matrices (classical algebras only)
Rm(X, r,”inv”’) — inverse Root matriceR (classical algebras only)

3.1.3. Operations in the weight space

kronecker(A’, A”, X) — Kronecker producA” x A”

sprod()’, A", X) — scalar product’ - .

angle(2/, 1", X) — angle between two weights

casimir(A, X) — eigenvalue of the Casimir operators
dominant(hwts X) — sorts highest weights in descending order
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sortwts(wts) — sorts weights in descending order

weyl(i, A, X) — Weyl reflection ofx through the simple roat;

weyl(2/, A, X) — Weyl reflection ofa through the weight

t2l(wts) — converts a table of weights into a flat list of weights (Maple V) or flattens a list of lists of weights
(Mathematica)

3.2. The Gelfand-Tsetlin method

In the following proceduregm) is a generic Gelfand—Tsetlin vector amlis a specific Gelfand—Tsetlin basis.
The optional argumentis the deformation parameter= exp(z).

3.2.1. Eigenvectors
e patterns(X, r) — Gelfand-Tsetlin basi8/

3.2.2. Matrix elements
e Ame(i, k, |m)) — matrix elements of the generatdy; for A, algebras
Ame(i, k, |m), z) — g-deformed matrix elements of the generatdg, for deformedA, algebras
Ome(i, k, |m)) — matrix elements of the generatsf; for B, and D, algebras
Cme(i, t, |m)) — matrix elements of the generatby; for C1 andC> algebras
Aim (i, k, M) — irreducible matrixA; for A, algebras
Aim(i, k, M, z) — g-deformed irreducible matrixA;; for deformedA, algebras
Oim(i, k, M) — irreducible matrixX;; for B, and D, algebras
Cim(i, t, M) — irreducible matrix ofE;, for C; andC2 algebras

3.2.3. Eigenvalues
e spectra(n, A, X) — eigenvalue of the invariaid, (A)

3.2.4. Auxiliary routines

m_jk(m, j, k, p) = mjx — mj; + p (m is a Gelfand—Tsetlin vector)
gdeform(x, ¢) — g-deformation ofx

commute(a, b) — commutatotia, b] = ab — ba

commute(a, b, q) — g-commutatofa, bl, = ab — qba

4. Detailed description of the KILLING package

In this section, we present a detailed description of each routine initheNG package, including comments
on the codes, examples and comments on the basic theorems about the representation theory of finite semisimple
Lie algebras.

Every algebraic procedure in thellKING package has the same name and arguments in the Maple V [25]
and Mathematica [26] environments. The only difference in the syntax is that parentheses are used in Maple V
to specify the arguments of a function instead of the brackets used in Mathematica. For example, in Maple V we
have rs(A,3) whereas in Mathematica it is written rs[A,3]. It must be observed that weights are represented by
lists in both algebraic languages and that lists are only represented by brackets [] in Maple V and by braces {} in
Mathematica. Therefore, we do not have any way, other than the context, to differentiate the DYN, SRS and FWS
bases in either symbolic computational softwares.

In this section, the name of each family of Lie algebras is a string X which must be surrounded by double
quotation marks in both environment§4”,”B”,”C",”D"”,”E",”F’,”G"}. The corresponding rank is designated
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by r. Anirreducible representation is indicated Ry a weight by, and a simple root by;. The weight system
is indicated byA(A) and the root system by'. The positive roots are denoted ", and the simple roots
by IT.

In the first part (The Roots & Weights formalism), all input and output weights (and roots) are in the DYN basis,
unless it is clear from the context that they are not. In the second part (The Gelfand-Tsetlin method), all input and
output weights (and roots) are in the FWS basis.

4.1. The Roots & Weights formalism

Weights and roots are represented by lists in the Maple V and Mathematica algebraic programming languages.
Therefore, the weighti, whose components arg, written asA = (A1, ..., A,) in the DYN basis for an algebra
of rankr, must be typed
A:=[Ay,...,A] — in Maple V,
A={A1,..., A} — in Mathematica

4.1.1. Computing roots and weights
The procedurbi(r) writes the basic irreducible representations (irréps)i < r, in the DYN basis for any Lie
algebra of ranle. Its output is a list of highest weights:

bi(r) > [M1,...,M,] MapleV,
bi[r]— {M1,...,M,} Mathematica

Example 1. The basic irreps for algebras of rank two and three are, respectively:

bi(2) — (1,0),(0,1); hi(3) — (1,0,0), (0,1,0), (0,0, 1).

When roots and weights are written in the FWS basis, the Weyl formula (27) for the dimension of the irreducible
representatiomt = [I1,...,[-], ' =r + 1for A, andr’ =r for B,, C,, andD,, can be simplified to [5, Ch. 5]:

r+1
A, — dim(A) = ]_[ (p’ p"), gi=——i+1,

k>iz1 81 T 8k 2
pi p?— p? 1
B, — dim(A) = ]_[ l ]_[ (’ ’5) gi=r—i+s,
i= lgl k>i=1 — 8k
2
C, — dim(A) = l_[p’ l_[ (p‘ p’Z‘) gi=r—i+1,
gl k>i=1 gl _gk
o (PP-p
D, - dimA) = [] ( A k), gi=r—i
k>i=1 \8i -8
where
pi =8+l (59)

When X is one of the four classical algebras, the procedtudén (A, X) uses the formulae above. For the
exceptional Lie algebras, the dimensions are directly calculated from the Weyl formula (27). The input highest
weight A must be in the DYN basis.
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Example 2. The dimension ofA = (1, 1) (adjoint representation) of, is computed as follows:
irrdim(A,”A”) — 8.
In the same way, the dimension af= (2, 0, 0) (adjoint representation) d@fs is:

irrdim(A,”C”) — 21.

Example 3. Dimensions can also be calculated in algebraic form. For example, the dimension of the representation
A = (m) of A1, orsu2) (the angular momentum algebra), is:

irrdim(A,”A”y - m + 1.

The weight systemh (A) of an irreducible representatioh= (A1, ..., A,) can be calculated in the DYN basis
using the following algorithm [5, Ch. 5]:

Algorithm 1.

e Calculate the heighit(A) of the representation;
o Write down all simple roots; = (A1, ..., Ay;) from the Cartan matriy;
e Starting with the highest weight, whose layer index i4. 4 (A) = 0, repeat each of the following steps for
each weight of the same layer index:
(1) For each component; > 0, write down the string of weights" = A — (k — Do, 1<k < A; + 1;
(2) Group the new weights* according to their layer indeX,  (o*);
(3) Move to the next layer index set of weights and repeat the last two steps, switching the highestweight
with each new weight*;
e Continue this process until the lowest weight in the last layel) + 1 is reached.

Algorithm 1 is used by the procedumes(A, X) to calculate the weight system(A) for all classical and
exceptional Lie algebras X. The output is a set of sets of weights grouped by their layer indices

ws(A, X) — tablg[0=[A],...,La(A) =[A,...]]) MapleV,
ws[A, X]— {{A},...,{A,...}} Mathematica

Example 4. The fundamental defining representatior= (1, 0) of dimension 3 ofA, (or su(3)) has the following
weight systen” = A(A) in the DYN basis:

La(h) < A
NG 0=(10
ws(A,"A") —
1=(-11
2 =(0-1

Note that the lowest weight i§0, —1) instead of(—1,0). The fundamental representation= (1,0, 0) of
dimension 6 oiC3 (or sp(6)) has the following weight system = A(A) in the DYN basis:
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La(h) < A
= (1,0,0)

= (-1,1,0)
= (0,-1,1)
= (0,1,-1)
= (1,-1,0)
5 = (—1,0,0)

ws(A,"C") —

A W N B O

All weights in these two examples are multiplicity free.

Example 5. The representatiot = (1, 1, 0) of dimension 64 ofC3 (or sp(6)). Its weight systemA(A) in the
DYN basis is:

La(d) < A

= (1,1,0

= (2,-1,1),(-1,2,0

= (0,0,1),(2,1,-1)

= (3,-1,0),(-2,1,1),(1,-2,2),(0,2,-1)
= (-2,3,-1),(1,0,0),(-1,-1,2)

= (-1,10),(1,2,-2),(2,-2,1)

= (=3,2,0),(0,-1,1),(-1,3,-2),(2,0,-1)
= (0,1,-1),3,-2,0),(1,-3,2,(-2,0,1)
= (-1,-2,2,1,-1,0),(—-2,2,-1)

= (-1,0,0),(1,1-2),(2,-3,1)

10 = (-1,2,-2),(-3,1,0),(0,-2,1), (2, -1, -1)
11 = (-2,-1,1),(0,0,-1)

12 = (1,-2,0),(-2,1,-1)

13 = (-1,-1,0

ws(A,”C") —

© 0 N o g A~ W N P O
|

Here we count only 38 weights instead of 64. Some weights have a multiplicity greater than one. The procedure
wsmmust be used in order to determine the multiplicities. We can see that the layer of inaethe same number

of weights as the layer of inde(A) — i (§(A) = 13 for this case). This is a general characteristic of any weight
system. Note that the lowest weight is equaHd.

The (inner) multiplicity n, of a weight in the weight systeni\(A) can be calculated recursively by the
Freudenthal formula (25) using the following algorithm [5,40]:

Algorithm 2.

e Compute the weight system;
e Split the weight system in sets of equivalent weights;



E. de Sousa Bernardes / Computer Physics Communications 130 (2000) 137-175 155

e Find the dominant weight (or the weight with the lowest layer index) in each set of equivalent weights;
e Sort the dominant weights in ascending order;
o Compute the multiplicity of each dominant weight.

The proceduravsm(A, X) was implemented using Algorithm 2. Its output is a list of two elements: the first
element is the dimension and the second element is a list of lists of equivalent weights in which the muliiplicity
is given in the first positions:

wsm(A, X) — [dim, [[n;, [A,...]],...]] MapleV,
wsm A, X]— {dim, {{n,, {1,...}},...}} Mathematica

Example 6. The multiplicities in the weight system(A), A = (1, 1, 0), of C3 are:

m —> A

1— (-1,3,-2),(2,-3,1),(1,-2,2), (1, -3,2),
(-1,-2,2),(2,1,-1),(-2,3,-1), (2,1, -1),
(1,1,-2),(2,-1,-1),(1,2,-2),(3,-2,0),
(1,-2,0),(1,1,0),(2,—1,1), (-1, -1,2),

wsm(A,”C") — (-1,2,0),(-3,1,0),(-1,2,-2),(-2,1,1),

(=2,-1,1),(3,-1,0), (-1, -1,0), (=3, 2,0),

2 - (2,0,—-1),(0,0,1), (0, —2,1),(=2,0,1),
(0,0,-1), (0,2, -1), (2, —2,1),(=2,2, -1),

4 - (0,1,-1),(-=1,0,0), (1, -1,0),
(0,—1,1),(1,0,0), (-1,1,0

When grouped by layers and the multiplicities are included, the number of weights in each layer has the following
structure:

L < number of weights

0=ce

1= oo

2= o900

3= ococoe

4 = eeccoe
5= oeeccee
6 = eccccee

It can be seen from the structure shown above that number of weights in a given layer is greater than or equal to
the number of weights in the previous layer until the middle of the layer tree. The second part (not shown above)
is a mirror image of the first part. This is another feature of any weight system.
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The poweis(A), givenin (24), and the layer inddx, (A) of a weight) in an irreducible representatioh, given
in (23), are computed by the procedupssver(A, X) andlayer(i, A, X), respectively. Their outputs are positive
numbers.

Example 7. The power of the highest weight = (1, 1, 0) for C3, whose weight system was calculated in
Example 5, is
powerA,”C") — 13.

The powers(A) = 13 means that the irreducible representatibhas 14 layers. The layer index of the weight
A= (1,0, 0) inside that irreducible representation is

layerx, A,”C") — 4.

Roots are the weights of the adjoint representation. In the DYN basis we have the following highest weights
for the adjoint representations of classical Lie algebras [28,30]:

A1 —> A= (2),

A, — A=(1,0,0,...,0,1), r>1,
B1 —> A =(2),

Bo — A =(0,2),

B, — A=(0,1,0,...,0), r>2

C,—>A=(20,...,0, r>=1,

D3 — A=(0,1,1),

D,—- A=(0,10,...,0, r>3
and

Ee— A=(0,0,0,0,0,1),

E;— A=(,0,0,0,0,0,0),

Eg— A=(0,0,0,0,0,0,1,0),

Fas— A=(1,0,0,0),

G,— A=(1,0)

for exceptional algebras. The orthogonal algebgacan be written a®, = A1 @ A1. The highest weightd given
above are used in the proceduséX, ) which calls the procedunes(A, X) to compute the corresponding root
systemX'(A). The output of rs is the output of ws.

Example 8. The A3 algebra has eight elements and its root system is:

L) < A
0= (L1
1= (-1, (-
SUA.2) > 2.-1).(-1.2)
2 = (0,0

3=(-21),(-2
4 = (-1,-1)
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From the symmetry of a weight system grouped by layers, the null(@@) must have a degeneracy of degree
two. For any simple Lie algebra of ramkthe null root, which has a degeneracy of degtgs the only degenerated
root.

Example 9. The C3 algebra has 21 elements and its root system is;

La(d) < 2

0 =(200
= (0,1,0
= (-2,2,0,(1,-1,1)
= (-10,1),(1,1,-21
=(0,-2,2,(-1,2-1),(2,-1,0
= (0,0,0)
(-2,1,0),(0,2,-2),(1,-2,1)
= (,0,-1,(-1,-11
(-1,1,-1),2,-2,0
= (0,-1,0)
= (=2,0,0)

rs('C”,3) —

O © © N o 0o~ W N R
Il

(=Y

The simple roots are always alone in the first layer before the middle of the layer tree, and the positive roots are in
the first half of the layer tree.

The procedursr(X, r) gives a list of simple roots; computed from the Cartam matrices for a Lie algebra X of
rankr:

st(X,r) — Il =[a1,...,a,] MapleV,

siiX,r]— 1 ={a1,...,a,} Mathematica

Example 10. In the DYN basis, the simple roots @, andC3 are, respectively:
Sr(//'AN’ 2) — a1 = (2’ _1)7 o = (_l’ 2)’

Sr(//C//7 3) — o1 = (29 _19 0)7 a2 = (_19 27 _1)7 a3 = (09 _29 2)'

The procedurehecl( X) extracts the positive roots from a root systéirin the DYN basis. Its output is a list
with the Weyl vectorp = (1, ..., 1) (half the sum of the positive roots) and a list with the positive rdots

checkX) — [p, ¥*] MapleV,
check>] — {p, X1t} Mathematica

Therefore it can be used to check whether the root system is complete or not.
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Example 11. From Examples 8 and 9, the positive roots forandC3 are, respectively:

checkX4,) - p=(1,1), ):;(2 =(1,1), (2, -1),(-1,2)

checkZc;) — p=(1,1,1), ¥, =(2,0,0),(0,1,0), (-2,2,0),
(1,-1,1),(-1,0,1), (1,1, -1,
0,-2,2),(-1,2,-1),(2,-1,0)

The dimension of a given algebra can be calculated directly from thertank

algebra— dimension
A, —r(r+2),
B, —r(2r+1),
Cr—r2r+1)),
D, —r(2r —1),
E, — 30r> - 335 4+ 1008 r=6,7,8,
Fp— 52, r=4,
Go— 14, r=2.

The proceduralgdim(X, r) computes the algebra dimension using the formulae above.

4.1.2. Writing weights in different bases

The Cartan matrix, given in (8), for an algebra X of rank is responsible for the exchange of bases between
the DYN and SRS bases as indicated in (15). The Cartan matrices are computed by the p@cgdurg using
the following explicit non-null matrix elements;; [5, Ch. 5]:

| +2 ifi=,
A= A= 2 - =1
+2 ifi=j,
) -1 ifji—jl=1andi,j<r-1,
Dr=Aij=1_1 itj=it2=r
-2 ifi=j+2=r;
+2 ifi=j,
) -1 ifji—-jl=1andi,j<r -1,
Br=Aij=1_1 ifj=it+1=r
-2 ifi=j+1=r;
+2 ifi=,
) -1 ifli—jl=1andij<r-1,
Cr=A=\_2 ifj=iti=r,
-1 ifi=j+1=r.

Note that the transpose of the Cartan matriBpis equal the Cartan matrix @f,. The inverse Cartan matrices [5,
Ch. 5] are computed by the same procedure using the optional third arglimehtCm(X, r,”inv”). For the
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exceptional algebras, the Cartan matrices are computed from (8). The proathites(1, X) andsrs2dyn(i, X)
implement the exchange of bases D¥NSRS:

cmX,r) = A, CmX,r,"inv’)y —> AL,
srs2dyriisrs X) — Apyn, dyn2srgipyn, X) — Asrs

Example 12. The Cartan matrix and its inverse fdp are:

4N _ 2 -1 N 1w ! _1_1 2 1
Cm(A,2)—>A_(_1 2), Cm("A”,2,"inv") — A =31 2)

The simple roots ofi2, given in Example 10 in the DYN basis, can be rewritten in the SRS basis by multiplying
them byA—1:

dyn2srgITpyn, "A”) — a1 = {1, 0}, ap = {0, 1}.

The positive roots for 2, given in Example 10 in DYN basis, when rewritten in the SRS basis are:
dyn2srgxgyy. "A") > Zdos=1{1,1},{1,0} {0, 1}.

Since the simple roots are the basis vectors of the SRS basis, this is exactly what we were expecting.

Example 13. We can analogously rewrite the simple roots@@, given in Example 10, and the positive roots,
given in Example 11, in the SRS basis:

dyn2sr¢ITpyn, 'C") — a1 ={1,0,0}, ap = {0, 1,0}, a3={0,0, 1},
dyn2srgXgyy. 'C") — Zdps=12,2,1},{1,2,1},{0, 2, 1},
{1,1,1},{0,1,1},{1,1,0},
{1,0,0}, {0, 1,0}, {0, 0, 1}.
The Cartan matrix and its inverse f6g are:

2 -1 0 2 2 2
. 1
Cm(”C”,3)—>A=(—1 2 —2), Cm(”C”,3,”|nv”)—>A‘lzé(2 4 4).
0 -1 2 12 3

The Weight matrix associated with an algebra X of ranks computed by the proceduwé¢m (X, r) using the
following explicit non-null matrix element®;; [5, Ch. 5]:
1 ifi=,
Ar= Wi =11 it jmitl j<r+l;
+2 fi=j=r,
B, — W;; = +1 ifi=jandi,j<r—1,
-1 ifj=i+landi<r—1;

41 ifi=j,
C=Wi=121 ifj=i+1;
-1 ifi=j=r,

+1 fi=j+1=r,

Dy — Wi =4 +1 if j=i+1=r,
-1 ifj=i+1l=randj<r-1,
+1 ifi=jandi,j<r—1



160 E. de Sousa Bernardes / Computer Physics Communications 130 (2000) 137-175

Note that the Weight matrix ofA, hasr + 1 columns. The inverse matrices [5, Ch. 5] are computed by the
same procedur®Vm(X, r,”inv”) using the optional third argumeritnv’. These matrices are responsible for
the exchange of bases between the DYN and FWS bases (for classical Lie algebras only). The procedures
dyn2fws(x, X) andfws2dyn(i, X) implement the exchange of bases D¥N FWS:

wmX,r) —> W, WmX,r,inv’) > w1

fws2dynirws, X) — Apyn,  dyn2fwsipyn, X) — Arws.

Example 14. The Weight matrix and its “inverse” fat, are:

N _ 1 —l 0
Wm("A ,2)—>W_< 0o 1 —1)’
1/ 2 1
wm("A”,2,"inv") - Wt =2 (-1 1) .
3
-1 -2
Note that these matrices are not square matrices, and so they occur dnplglijebras:

2 —1 -1
1
WW—1:<3 ‘i) W‘lW:é(—l 2 —1>.
1 -1 2

The weight systen?” of the fundamental representation 4%, given in Example 4 in the DYN basis, can be
rewritten in the FWS basis by multiplying them iy~
dyn2fwg Ypyn,”A”) —
A= 302,-1,-1], aa=34[-1,2,-1], A3=3[-1,-1,2].
The fractions appearing in the components of the weights given in the above example are easily avoided because

in the FWS basis fon, algebras (and only fod, algebras) the sum of the components of any weight (or root) is
zero, that is, the weights are perpendiculapte [1, 1, ..., 1]. This is done by the proceduiws2fwgi, m):

fws2fws(a, m) — A + m.
Example 15. Therefore, we can add a constamt= 1/3 to each weight in the weight systein given in the
previous example:

fws2fws(Trws, 3) — A1 =[1,0,0], 22=[0,1,0], A3=10,0,1].

This is exactly what we were expecting if the weights of the defining fundamental representation were all linearly
independent since they are the basis vectors of the FWS basis. In fact wieshave(h; + 12), which means that

only A1 anda,, for example, are linearly independent (they form the modified-FWS basis; see Example 17). This
is not the case for the other classical Lie algebras. For example, the positive weights in the weightsgétibim
fundamental representation 6§, given in Example 4 in the DYN basis, can be rewritten in the FWS basis as:

dyn2fwg Ypyn,”C”) - A1 =1[1,0,0], A2 =[0, 1,0], A3 =[O0, 0, 1].

In this case we have three true linearly independent weights.

Example 16. The positive rootsE* given in Example 11, in the DYN basis, for the algebrgsand C3 can
respectively be written in the FWS basis as follows:
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dyn2fws Zg,y."A") = Zgys= 11,0, —1],[1, —1,0],[0, 1, —1],

dyn2fws Xg,y."C") — Zys=12.0,01,[1, 1,0],[0, 2,0]
[1,0,1],[0,1,1],[1,0, —1]
[1,-1,0],[0,1, —1],[0,0,2].

For Ay, the simple roots are; = [1, —1,0] andaz = [0, 1, —1], while for C3 they area; = [1, —1,0], ap =
[0,1, —1] anda3 = [0, 0, 2].

The exchanges of bases given in (19)—(21) forAhelgebras are implemented by the procedures:

fWS2fWSM(A) — A — Ars1,
dyn2fwsmipyn) — Apws. fwsm2dyriigws) — Apyn.
srs2fwsniisre) — Apwg. fWSM2Sr$ipywg) — Asrs

Example 17. The weights shown in Example 14, in the FWS basis, can be rewritten in the FWS’ basis as:

fws2fwsmYrws) — A1 =[1,0], A2 =[0,1], Az =[-1, —1].

Now it is obvious that there are only two linearly independent weights.

The Root matrice®s = (Wa)!, Rg = (We)', Rc = (W) andRp = (Wp)' are responsible for the exchange
SRS— FWS for classical algebras [5, Ch. 5]. They are computed by the proc&uu(X, ») and their inverse
matrices byRm(X, r,”inv”). The procedurefivs2srqx,””X”) andsrs2fwgx,”X"”) implement the exchange of
bases SRS> FWS:

Rm(X,r) — R, Rm(X,r,"inv") > R,
srs2fwgisrs X) = Arpws, fws2srgirws, X) — Asrs

4.1.3. Operations in the weight space
In a Kronecker product’ x A” between two irreducible representatiotisand A”, every weightinA (A’ x A”)

is given by:
A(A x A"y = A(A) + AAY). (60)
The Kronecker product representation is reducible:
A x A=) "@naA, (61)
A

wheren 4 is the (outer) multiplicity of the irreducible representatidn It can be shown [41] that all possible
highest weights im\ (A’ x A”) are inA(A’) + A” or A(A”) + A’. The irreducible components in the DYN basis
and their degeneracies can be found using the following algorithm [5,41]:

Algorithm 3.

Compute the weight systems af and A”;

Compute the weights of the Kronecker produétx A” and group and sort them by their multiplicities;

Find all possible highest weights and sort them from the highest to the lowest dimensional weights;

Remove from the weight system(A’) + A(A”) the weight systems corresponding to the previous highest
weights. The number of times that each irreducible representation is removed from the Kronecker product
weight system is its degeneracy.
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The procedur&ronecker(A’, A”, X) was implemented using Algorithm 3. Its output is a list of lists of highest
weights A with their multiplicitiesn 4 in the first positions:
kronecke(A’, A”, X) — [[n4, Al,...] MapleV,
kroneckerA’, A”, X]— {{na, A},...} Mathematica.

Example 18. The fundamental representatidi,; = (1, 0, 0), for C3 has dimension six. The remaining basic
representationdyl; = (0, 1,0) andM3 = (0, 0, 1), both of dimension 14, can be obtained from the Kronecker
productdM; x M1 andM1 x M1 x M1, respectively:

kronecketM1,M1,”C") — (2,0,0) @ (0, 1,0) & (0, 0, 0),
kronecketM 1, (2,0,0),”C") — (3,0,0) ® (1,1,0) & (1,0, 0),
kronecketM1, (0,1,0),"C") — (1,1,00® (0,0,1) & (1,0, 0),
kronecke(M 1, (0,0,0),”"C") — (1,0, 0),

S MixM1xM1=2(1,1,006(3,0,0)d (0,0,1) & 3(1,0,0).

The dimension of1, 1, 0) is 64, and the dimension @8, 0, 0) is 56. The representations which can (cannot) be
obtained from Kronecker powers of the fundamental basic representation are called vector (spinor) representations.
In general, forA, andC, algebras, the basic representations are vector representatiolts ghil ;.

Example 19. The basic representatiohs, of B,, M,_1 andM, of D,, andM of G2 are examples of spinor
representations:

kronecke¢(1, 0), (1,0),”B”) — (2,0) @ (0, 2) @ (0, 0),
kronecke¢(1, 0, (1,0),”G") — (2,0)® (0,3)® (0,2) @ (1,0) & (0, 0),
kronecke¢(1, 0, 0), (1, 0,0),"D") — (2,0,0)® (0,1, 1) & (0, 0, 0).

From the examples above, we can see llhatx M1 5 M, for B2, D3 andGo.

The equivalence relation between two weightndl’ given by a Weyl reflection; through the simple roat;
for an algebra X is computed by the procedwssy|(i, 1, X). Its output is a weight’ equivalent to.. The reflection
through an arbitrary weight” is given by the same procedureeyl(1”, A, X).

Example 20. The equivalent weights to the weight= (1, 0, 0) of C3 (see Example 6) through the simple roots
a1, a2 andag given in Example 10, are:
weyl(1, 1,"C"y - (=1,1,0),
weyl(2, 1,”C") — (1,0, 0),
weyl(3,1,”C") — (1,0, 0).
Weights can be ordered in any basis. The procedorants(wts) sorts a list of weights wts in descending

order. As we can see from the following example, the ordering process based only on the difference of weights, as
established in Section 2.1, can change from basis to basis.

Example 21. Let us sort the following set of weights fa:
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wpyN = (1,2),(3,4), (0, 3),
wsrs= {3,5/2}, {7,11/2}, {3, 3},
wrws=[3,2],[7,4],[3, 3].

Since all their components are positive, they represent irreducible representations of dimension 40, 420 and 30,
respectively. Their respective heights are 11, 25 and 12. We have in the DYN, SRS and FWS bases, respectively:

sortwtswpyn,”C”) — (3, 4), (1, 2), (0, 3),
sortwtgwsrs,"C") — {7,11/2}, (3,3}, {3,5/2} = (3,4), (0, 3), (1, 2),
sortwtSwrws,”C") — (7,41, [3, 3], [3,2] = (3, 4), (0, 3), (1, 2).

Note that the sorting process only coincides for the SRS and FWS basis.

The procedurédominant(hwts X) sorts a list of highest weights hwts in the DYN basis in descending order by
their heights and their dimensions, respectively.

Example 22. For the same set of weights in the previous example, the output dbtinérant procedure is:
dominantwpyn,”C”) — (3,4), (0, 3), (1, 2).

The scalar product between the weightsand 2’ in the DYN basis is implemented by the procedure
sprod(x, A/, X). This scalar product is calculated by [5, Ch. 5]
e

2 )

,
hed! =Y PN, N (62)
i=1

wherew; represents the simple roots. The normalizing factér @an be set by the user through the global variable
ShortRoots2 Its default value is 2, corresponding to the length of the short roots equ/d.tdhe angle in radians
between the weights and’ is given by the procedur@ngle(x, 2/, X).

Example 23. Let us now determine the lengths of the weights of the DYN, SRS and FWS bases and their relative
angles for theA, algebra. The DYN basis is formed by the basic representaltians (1, 0) =[2, —1, —1]/3 and
M2=(0,1)=1[1,1,-2]/3:

sprodM1, M1,"A") — [M1|?=2/3, sprodMa, M2,"A") — |M2|* = 2/3,

sprodM 1, M2,”A”) - M1-M2=1/3, anglgM1,M5,"A”) — /3.
The SRS basis is formed by the simple ragts= (2, —1) =[1, —1,0] andaz = (—1,2) = [0, 1, —1]:

sprodaz, a1,"A”) > |e1/* =2,  sprodez, a2,"A") — |az|? =2,

sprodasi, a2,”A") — a1 a2 =—1, anglday, az,”A") — 27/3.
The FWS basis is formed by the positive weights of the fundamental representatio(i, 0) = [2, —1, —1]/3,
ro=(-1,1)=[-1,2-1]/3 (A3 = —A1 — A2):

sprodi;, »;,"A”) — 2/3, sprodi;, r;,"A") — —1/3,

anglgi;, A;,"A") — 27/3.

It must be observe that, although the weightsi, andiz are not orthogonal vectors for the algebra, the scalar
products can be calculated using a unity metric in the FWS basis [5, Ch. 5]:

u-v= [ulifvl;. (63)
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It can be seen from the cases above that the same results for all scalar products can be obtained directly from (63)
using the FWS components. For all other algebras, the FWS basis has orthogonal vectors. The same is not true
when the fractions are eliminated from the FWS basis (modified-FWS) falgebras. The SRS and DYN bases

are not orthogonal, but they are dual to each other, thatisM, = a2 - M1 =0.

4.1.4. Comments

Before closing this subsection, it is essential to make some comments about the canonical forms (5) (Cartan—
Weyl) and (7) (Chevalley) for the commutation relationsAf algebras. Let us consider they algebra as an
example. Its simple roots in the FWS basis aje=[1, —1, 0] anda2 = [0, 1, —1] (see Example 16). The third
positive root isaz = a1 + a2. Let Efr E; andH;, i < 3, be the elements associated with the positive, negative
and null roots, respectively. Although there are only two null roots, let us assume for a moment that there are three.
In that case, using the simple root components given in the FWS basis, we have from (5) the following defining
commutation relations:

[H1, H2] =0, [H1, H3] =0, [H2, H3] =0,

[Hi, E{1=E7, [Ho, Ef1=—E], [Hs, Ef1=0,

[H1, ES1=0, [Ho, ES1=EJ, [Hs, EJ1=—ES, (64)
[Hi, E3]1=E3, [Hz, E5]1=0, [H3, E3]=—Ej3,

(Ef,Eyl=Hi—Hp, [Ef E;1=H,—Hs, [Ef,E3]1=Hi— Hs.

We can see from this adjoint representation that there are only two linearly independent elémeirise

Hy + H» + H3 = 0. This reflects the fact that the roots are perpendicular #o[1, 1, 1] in the FWS basis (for

A, algebras only). These commutation relations define the special (traceless) general linear LiesiBelbta

is a subalgebra of the non-semisimple general Lie alggli& which also contains the non-null trace matrices.

In generalgl(r + 1) = I @ sl(r + 1), wherel is the unidimensional Abelian algebra formed by multiples of the
identity andsl(r 4 1) is the special linear semisimple Lie algebra associated #itiThe Chevalley commutation
relations are simpler than the Cartan—Weyl commutation relations. Indeed, using the simple roots in the DYN basis,
a1 = (2, —1) anday = (—1, 2) in (7) we have (see Example 11):

[h1, h2] =0,
[h1,e1]l =2e1, [h2,e1] = —eq, (65)
[h1,e2] = —e2, [h2, e2] = 2eo,

ler, fil =h1,  lez, fal =ho.

Comparing (64) with (65), we have, = H1 — Ha, hp = H» — H3,e; = E;f and f; = E; .

As an introduction to the next subsection, let us use (14) in order to write the matrices of the fundamental
representation given in Example 4 for th¥e algebra. Let the ordering of the weights e = 11 = (1, 0),
|2) = A2 = (—1,1) and|3) = A3 = (0, —1). The positive roots in the DYN basis asg = (2, —1), az = (-1, 2)
andasz = (1, 1) (see Example 11). This representation is three-dimensional. Since the weights are the eigenvalues
of the elements of the Cartan subalgebra, we have:

1 0
hy= ( -1 ) hzz( 1 ) (66)
0 ~1
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Sincery + a1 =Xi1 (M1 — a1 = A2), A3+ a2 = A2 (A2 — a2 = A3) andAis + a3 = A1 (A1 — a3 = A3), then it follows
from (14) that

0 x1 O 0 0 O 0 0 x3
€1=<0 0 0), 622(0 0 xz), e3=<0 0 0), (67)
0O 0 O 0 0 O 0 0 O

and f; = (e;)! (real transposition). From the last relation in (65), we can chagsex, = 1. Sinceaz = a1 + o>
andwy — a2 = (3, —3) is not a root, then from (7), withe = 0, we have

e3 = t[e1, e2], (68)

from which we can choose; = 1. The matrices in (66)—(67) satisfy the commutation relations given in (65).
4.2. The Gelfand-Tsetlin method

The Gelfand—Tsetlin formulae for the matrix elements are known only for unitagnd orthogonab, and D,
algebras [22,21,4]. For symplectic algebras, there are only a few particular cases [38,34,39,24].

In the following procedures, X is one of the classical algebfas’{ "B”, "C”, "D"}. All weights must be in
FWS basis (FWS with integral components fo).

4.2.1. The Gelfand-Tsetlin patterns

The complete set of Gelfand—Tsetlin patterns (quantum numbers) for a given irreducible representation
the FWS basis) is computed in two steps: the procepatierns(X, r) must be used to write a specific procedure
vXr(A) which is used to compute all vectors af The procedure vXis written on the hard disk in a directory
specified by the global variab&orkDir . Its default value is the current directory “./”. The output ofwis a list
with the Gelfand—-Tsetlin patterns, where each pattern is a list in one of the following formats:

A,: A generic Gelfand-Tsetlin pattern for the irreducible representatien[mi,, ..., my,] is

[[hl7 R hn]’ [[m11]9 [m127 m22], R [mll’h R mnn]]]7

where the componenis;; are given in (34) angha, ..., h,1, n =r + 1, is a weight ofA (A);
B,: A generic Gelfand—Tsetlin pattern for the irreducible representatien(my o, . .., m, 2] is

[[m11], [m12,m22l, ... . [m12e—1,....mp2r—1l, [m12,....my2/1],

where the componenis;; are given in (45);
C,: A generic Gelfand—Tsetlin pattern for the irreducible representatien[ws,, ..., w1 iS

[[hl’---’hrL [0'17"'70-r]9 [[a)ll]7 [VlZ],---,[a)lr,---,wrr]]],

where thes;, y;; andw;; are givenin (50) anghy, ..., h,] is a weight ofA(A);
D,11: A generic Gelfand-Tsetlin pattern for the irreducible representatien[m1 211, ..., m,+12-+1] iS

[lm11], [mi2,m22l, ... [m12e,....mp2e), [M12r41, ..., mry1241]],

where the componenis;; are given in (46).

Example 24. The following command

patterng’A”, 2) — vA2
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writes the procedure vA2 to compute the vectors of a given irreducible representation Bér example, the
Gelfand-Tsetlin vectors of the fundamental representatien[1, 0, O] are:

1 0 0
1 0 — 21 =[1,0,0],
1
1 0 0
VA2(A) — 1 0 — A2=10,1,0],
0
1 0 0
0 0 — x3=1[0,0,1].
0

Note that the fractions were eliminated in the components of all weights (see Example 14), therefore, before going
to the DYN and SRS bases they have to be rewritten in the FWS’ basis (using the procedure fws2fwsm).

Example 25. The following command
patterng’'D”, 2) — vD2

writes the procedure vD2 to compute the vectors of a given irreducible representatin Bér example, the
Gelfand-Tsetlin vectors of the fundamental representatien[ 1, 0] are:

1 0 1 0 1 0 1 0

vD2(A) — |1) = . 14) =

-1

Example 26. The following command
patterng’C”, 2) — vC2

writes the procedure vC2 to compute the vectors of a given irreducible representation Feér example, the
Gelfand-Tsetlin vectors of the fundamental representatien[1, 0] are:

1 0 1 0
0 0 0 0
-1 1

0,00=1 01=0,00=1

vC2(A) — 1 0 1 0

1 -1 1 1
13) = 1 , |4) = 1 ,

0 0

o1=1 00=0,01=1, 00=0.

4.2.2. Matrix elements
The matrix elements for unitary (classical and deformed) and orthogonal algebras can be calculated either
algebraically or numerically.

Unitary algebras

The matrix elements of the generatdrg of gl(n, R), given in (35) and (36), whetie= j < n for the generators
associated with the null roots anjd=i + 1< n (i = j + 1 < n) for the positive (negative) simple roots, are
calculated by the proceduseme(i, j, |m)), where|m) is an arbitrary Gelfand—Tsetlin vector. Its output is a list
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of lists which have the matrix element in the first positions and the resulting Gelfand—Tsetlin vector in the second
positions.

Example 27. A typical Gelfand—Tsetlin vector of the irreducible representatloa [m12, m22] of gl(2, R) in the
chaingl(2, R) c gl(1, R) is

mi2 ma22

miy — [[m11l, [m12,m22]] (Maple V). (69)

lm) =

The action of thyl(2, R) elementsA11, A2z, A12 andAz; on the generic vector given above is:
Ame(l, 1, |m)) — [m11, [[ma1l, [m12, m22]]]
= A11lm) =maa|m),
Ame(2,2, |m)) — [mi2+ m22 — ma1, [[m11l, [m12, m22l]]
= Ag2lm) = (m12+ ma2 — m11)|m),
Ame(l, 2, |m)) — [b(m11). [[m11+ 11, [m12, m22]]]
= A12lm) = bi(m11)|m11+ 1),
Ame(2, 1, |m)) — [bi(m11— 1), [[m11— 11, [m12, m22]]]
= A1zlm) = bi(m11 — Dlmi1— 1),
where
bim11) = {(m12 — m11)(ma1 — maz+ 1)} 2.

We can use the prescriptions given in (31)—(32) to get the matrix elemest&oR). Its diagonal generator is
Hi1=(A11— A22)/2. Note thatH,, = — H11. The vector (69) must be changed to

no_|tJ —J
|m)_’ l ’

Now, using|m’) we have:

Ame(l, 1, m")) — [1, [111, [j. = j1]]
= An|jl) =1jl).

Ame2, 2, |m")) — [~1, [l [j. =]
= Al jl)y =—L1jl),
< Huljly =11j1),

Ame(L, 2, |m") = [{(G = DG + 1+ DY [ +11 [, —41]]
= A12ljl) ={(j — DG +1+ D2 1+ 1),

Ame2, 1, |m") — [{(i — 1+ DG + D)2 (11— 11 1. —1]]
= Avaljl) = {(j — 1+ DG +D}2j 1 -1

Jj = 3(mi2—ma). (70)

1/2

The proceduren_jk(|m), j, k, p) can be used to modify thgk entry in the Gelfand—Tsetlin vectorn) by p:
m_jk(lm), j, k, p) = Im i + p).

For convenience when checking commutation relations, the procedomeute(A, B) can be used to compute
commutators:
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commutéA, B) — [A, B],
commutéA, B,q) — [A, Bl,=AB —q AB.

The explicit construction of the irreducible matrices of a particular representatighifR) in the canonical
chaingl(n, R) Cc gl(n — 1, R) C - - - is computed by the procedufém (i, j, M), where the indicesand; have the
same meaning as explained before, ahds an explicit Gelfand—Tsetlin basis. Its output is a matrix representing
the generatod;;.

Example 28. The Gelfand—Tsetlin vectors of the fundamental representatien[1, 0, O] of A, or gl(3, R) are
given in Example 24. The ordering of the vectors is given by the procedure vA2 as shown in Example 24. The
irreducible matrices for the diagonal operators in the representatiane:;

1
Aim(l,l,M)—>A11=< 0 ),
0
0
Aim(2,2,M)—>A22=< 1 ),
0

0
Aim(3,3,M)—>A33=< 0 ),
1

where M is a list containing the Gelfand—Tsetlin vectors computed by the procedure vA2. The non-diagonal
operators associated with the simple roots are represented by

0 1 0 0 0 O
Aim(1,2,M)—>A12=<0 0 0), Aim(2,3,M)—>A23:(O 0 1),

0 0 O 0 0O

0 0 O 0 0 O
Aim(2,1,M)—>A21=<1 0 0), Aim(3,2,M)—>A32:(0 0 0).

0 0O 010

Note that they are the Weyl matrices given in (28) and identical to the matrices calculated in (66)—(67) with
x1 = x2 = x3 = 1. The Cartan—Weyl commutation relations (5) can be verified using the procedure commute:

commut&Ai2, A1) — A11— Az, COMMUt&A23, Azp) — A2z — Asgs,
The ¢-deformed matrix elements given in (41) and theleformed irreducible matrices are calculated using

the deformation parametgras an optional fourth argumentgane(i, j, |m), ¢) andAim(i, j, M, q), respectively.
The deformation given in (39) is calculated by the procedputeform(x, ).

Example 29. Since the Weyl matrices defining ten, R) algebras have only unity elements and the unity is not

deformed, the defining representation is never deformed g¥theformed matrices for the adjoint representation
A =[2,0]of sl (2) are:

0

1) ,

0

0
o),
0

0
Am(1,2, M, q) — 4A12=/[2]4 (0
0
0
Aim2,1, M, q) — 4A21=/[2]4 (1
0

P OOOOLRr
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where M, the Gelfand-Tsetlin basis, must be calculated by vA1yhich is written by pattern§f”,1). The
elements of the Cartan subalgebra are not deformed:

2 00 0 0O
Aim(l,l,M,q)—>A11:(0 1 0), Aim(2,2,M,q)—>A22=<0 1 0).
0 0O 0 0 2

The deformation of

2 0 0
H1=A11—A22=<0 0 0>,

0 0 -2

is given by

1 0 O
qdeform H1, g) — [H1l, = (2], (0 0 0) .
0 0 -1

The defining commutation relations (37) can be checked:

commuté; A1, 4 A21) — [Hilg, ..

Orthogonal algebras

The matrix elements of the generatdfg given in (47) and (48) are calculated by the procedumee(i, j, |m)),
wherej =i — 1 and|m) is a generic Gelfand-Tsetlin vector. Its output is a list of lists which have the matrix
element in the first positions and the resulting Gelfand—Tsetlin vector in the second positions.

Example 30. A generic Gelfand—Tsetlin vector of an irreducible representatiea[n 13, m23] of D2 ~ sa(4) in
the canonical chai, C By C D1 is

mi3 ma23
mi2
mil

Im) =

— [[m11], [m12], [m13, m23l] (Maple V). (71)

The generatok» is always diagonal:
Oome2, 1, |m)) — [[inML [[m11], [m12], [m13, mzs]]]]
= Xo1lm) =imya|m).
The generatok sz is a tridiagonal matrix with no diagonal elements:
Oomes, 2, |m)) — [[a%(mn), [[m11+ 1], [m12], [m13, mas]]],
[—at(mi1—1), [[m11— 11, [m12], [mas, mzs]]]]
= Xazlm) = aj(miv)|mi1+ 1) — ai(m11 — Dimig — 1),
where

12
at(miy) = 3{m12 — m1)(maz + mys + D)2

The matrix elements aX43 are:
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Oome4, 3, [m)) — [[b%(mlz), [[m11], [m12+ 11, [m13, m23]]].
[b3(m12— 1), [[m11], [m12 — 11, [m1a, m23l]].
[ica, [[ma1], [m12], [ma3, mzs]]]]
= Xaglm) = b3(m12)lmiz+ 1) — b3(m12 — Dlmiz — 1) +ica|m),

where

(m12+mi11+ D (mi2+mi13+ 2)(m12+ maz+ 1) }1/2
(m12+1)2%@2m12+3)(2mi2+ 1)
12

x {(m12—m114 D (m12 — m13)(m12 — maz+ 1)} 77,

b3(m12) = {

_ maymz3(mi3+1)
miz(miz+1)
The action of the remaining elements@$ can be calculated from (43):

X31=[X32, X21], Xa2=1[X43, X32], Xa1=1[X43, X31] =[X42, X21].

The explicit construction of the irreducible matrices of a particular representatiso(of in the canonical
chainso(n) Cc so(n — 1) C --- is computed by the procedu@m(i, j, M), wherei = j + 1 andM is an explicit
Gelfand—Tsetlin basis. Its output is a matrix representing the genefgtor

Example 31. The Gelfand-Tsetlin vectors of the fundamental representatiea [1, 0] of D, are given in
Example 25. The ordering of the vectors is given by the procedure vD2 as shown in Example 25. The irreducible

matrices in this representatiohare:

1
Oim(2,1, M) — X1 =i 0 1 =i(A11— Asz3),
0
0 1 0
. 1 -1 01 0 1
Olm(3,2,M)—>X32=E 0 -1 0 0 ZE(A21_A12+A32_A23)’
0 0 0 O
0 00
. 0 0 0 1
Oim(4,3, M) — X43= 0 00 0 = (A24— Ag2),

0 -1 00
whereM is a list containing the Gelfand—Tsetlin vectors computed by the procedure vD2. These matrices are not
in the Cartan—Weyl canonical form given in (5).

Symplectic algebras

The Gelfand—Tsetlin matrix elements of the generatog;adndCs in the chainC, ¢ C1 @ C1 are given in [24]
and they will not be reproduced here. They are calculated using the procgue(e ¢, |m)). Its output is a list of
lists which have the matrix elements in the first positions and the resulting Gelfand—Tsetlin vectors in the second
positions. Although this procedure is limited to thie case, the matrix elements of some particular generators
can be calculated for the general cage (1) The diagonal operatois< r ands = 0; (2) TheC1 non-diagonal
operators = r andr = £+1; and (3) TheC2 non-diagonal operatois=r — 1 andr = 4-1. In generalj < r and
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t = 0 for the elements associated with the null roots, ardl (r = —1) for the positive (negative) roots. The
explicit construction of the irreducible matrices is computed by the procecionéi, r, M), whereM is a given
Gelfand-Tsetlin—Cerkaski basis. Its output is a matrix.

Example 32. A typical Gelfand-Tsetlin—Cerkaski vector of an irreducible representatien w12, w22] of C2 in
the chainC, c C1 @ C1 is given by:
w12 22
Y12

lw) = w11 ha| [[h1, h2l, [o1,02], [[w11l]. [y12]. [@12, w22]]] (72)
h1

where
o1=w11, 02=w12+ w22+ w11 — 2y12.

The matrix element of the operatﬁgr associated with the simple ro@t = [0, 2] of Cz is

Cme2, +1, o) > |[a. [(h1, h2 + 2], [01, 021, [[o1a], [12], [012 w22l ] ]|

= Ej|w)=a |h2+ 2),
1/2
a={(2—h2) (o2 +h2+2)}"2

Example 33. The Gelfand—Tsetlin vectors of the fundamental representatioa [1, 0] of C, are given in
Example 26. The ordering of the vectors is given by the procedure vC2 as shown in Example 26. The irreducible
matrices of the generators in the representaticare:

0 ~1
Cim(1,0, M) — Hy = 0 1 ., Cim2,0,M)— Hy= 1 0 ,
1 0
-1 0 00
. 00 . _ 0 1
+ _ _ _
CimL LM —Ef=| g 4 .CimAL-LM—Er=| ,
0 1 00
00 01
cim2 1M — £ =v2| Lt O cim2 —1. M) — E; =v2| 2 ©
1) ) 2 0 0 ) 1) 1) 2 0 O )
0 0 00

whereM is a list containing the Gelfand—Tsetlin vectors computed by the procedure vC2. These matrices are in the
Cartan—Wey! canonical form given in (5). For example, the generﬂﬁirare associated with the (simple) roots
+a;,i =1,2,wheren; =[1, —1] = (2, —1) anda2 = [0, 2] = (—2, 2). Their defining commutation relations are:

commut€E;, E7) — Hi— Hp, commut€E;, E;) — 2Ho.
4.2.3. Eigenvalues of invariants

The eigenvalue€’, (A) of the invariants of ordep for classical algebras, given in (56), are calculated by the
procedurespectra(p, A, X). The values ofp for the independent invariants are given in Table 1.

Example 34. Thegl(2, R) algebra has one invariant of order one and one of order two. Their eigenvalues in an
irreducible representation given by= [m1, m2] are, respectively:
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spectral, A,"A") — C1(A) =m1+ mo>,
spectrg2, A,"A") — C2(A) =m1(m1+ 1) + ma(m2 — 1).

The semisimpled, algebras do not have a linear invariant, therefere+ m2 = 0. Following the prescription
in (32), we haveA = [j, —j] for sl(2, R) and its second order invariant has the eigenvalue:

spectré@2, A,"A") — C2(A) =2j(j +1).

Example 35. The D, algebra has two second order invariants whose eigenvalues in an irreducible representation
given by A = [m1, m2] are:

spectr@2, A,"D") — Ca(A) = 2m1(my + 2) + 2m3,

spectrad, A,"D") — C5(A) = —8ma(m1 + 1).

Note thatp = 2r must be used in the procedure spectra for the eigenvalGé.ofhe eigenvalue€, calculated
with p being odd are not linearly independent:

spectrgl, A,”D") — C1(A) =0,
spectrg3, A,”"D") — C3(A) = C(A).

It is interesting to calculate the eigenvalue of the Casimir operator (second order invariant) using the procedure
casimir. Before doing that, the highest weightmust be rewritten in the DYN basist = [m1, m2] = (m1 +
mp, m1 — m2). Therefore,

casiminA,”D") — ma(my + 2) +mj = 3C2(A).

5. Installation

The KILLING package was written using the Maple V (Release 5) and Mathematica (Release 3) algebraic
programming softwares. Therefore, it can be used in any operational system which has Maple V or Mathematica
installed. The source codes come in the following directory structure:

$Root/killing/maple/src

$Root/killing/maple/lib

$Root/killing/maple/help

$Root/killing/math/src

$Root/killing/math/Files
$Root/killing/math/Files/Addons/Applications/Killing
$Root/killing/math/Files/Addons/Applications/Killing/Kernel
$Root/killing/math/Files/English/Addons/Applications/Killing

where $Root represents the absolute path where theG files are installed.
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5.1. Installation under Maple V
The following steps are necessary for a manual installation of theliG package under Maple V (Release 5):
(1) Execute the Maple V worksheet
$Roovkilling /maple/makemws
in order to compile all procedures in thelKING package. The output is written in the binary file
$Root/killing /maplelib /killing.m
The output is controlled by the ASCII file
$Roovkilling /maple/killing
(2) Execute the Maple V worksheet
$Roovkilling /maple/help/makemws
in order to generate the online help files. The output is written in the binary file
$Rootkilling /maple/lib /maplehdb
(3) The following line
libname:= ‘$Root/killing /maplelib’, libname

must be added to the Maple V initialization file in order to have theLKNG package loaded in a Maple V
session by

with(Killing );

It is important here that the absolute path indicating where the Kilésg.m andmaple.hdb are
located, comes before the Maple V library path giveribgame ;
(4) One alternative to the previous step is to redefine the Maple V library search path gilemdoye |, as in
step (3) above, for each Maple V session.
The Maple V initialization file under Microsoft Windows is nametdple.ini  and should be placed in one of
the Maple V subdirectories, eithBb or update . For case in which there is a Maple V subdirectopdate |,
then the initialization filenaple.ini.  must be created (or modified) there.

5.2. Installation under Mathematica

The KILLING package can be loaded in two ways: (1) using the ASCII file
$Roovkilling /mathysrc/killing
to load all functions inside a Mathematica sessikilling  ); or (2) using the files under
$Rooykilling /mathyFiles

to install it as an Add-On application. This is accomplished by the following steps:
(1) Copy the subdirectory

$Roovkilling /mathyFiles/Addong ApplicationgKilling
and its contents to
$RootMath Files/Addong Applicationg/Killing
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where$RootMath is the root of the Mathematica directory tree in single user systems or a user relative
path for the Add-On subdirectories in multiple user systems. ThelKG functions must first be declared
as stub functions by typing<Killing* ", the full package is loaded when one of the functions is used for
the first time;

(2) Copy the subdirectory

$Rootkilling /mattyFiles/Englisty Addong Applicationg/Killing
and its contents to

$RootMath Files/DocumentatiopEnglistyAddong ApplicationgKilling

This installs the online help files. In order to add an entry to the Add On radio button to the Help Browser,
the ASCII file BrowserCategories.m

$RootMathFiles/DocumentatiopEnglisty Addong
must be modified to include the path for the.KING help files. There is a commented sample in
$Roovkilling /mathyFiles/Englisty Addong
(3) Rebuild the Mathematica help index using the Help meebuild Help Index button.
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