If it universally appears, by experiments and astronomical
observations, that all bodies about the earth gravitate
towards the earth . . . in proportion to the quantity of matter
that they severally contain, that the moon likewise . . .
gravitates fowards the earth . . . and all the planets one
fowards another; and the comets in like manner towards
the sun; we must, in consequence of this rule, universally
allow that all bodies whatsoever are endowed with a principle
of mutual gravitation.

NEWTON, Principia (1686)

THE DISCOVERY OF UNIVERSAL GRAVITATION

IN CHAPTERS 6 and 7 we have built up the kind of foundation in
dynamics that Newton himself was the first to establish. In a
nutshell, it is the quantitative identification of force as the cause
of acceleration, coupled with the purely kinematic problem of
relating accelerations to velocities and displacements. We shall
now consider, as a topic in its own right, the first and most
splendid example of how a law of force was deduced from the
study of motions.

It is convenient, and historically not unreasonable, to con-
sider separately three aspects of this great discovery:

1. The analysis of the data concerning the orbits of the
planets around the sun, to the approximation that these orbits
are circular with the sun at the center. Several people besides
Newton were closely associated with this problem.

2. The proof that gravitation is universal, in the sense that
the law of force that governs the motion of objects near the
earth’s surface is also the law that controls the motion of celestial
bodies. It seems clear that Newton was the true discoverer of this
result, through his analysis of the motion of the moon.

3. The proof that the true planetary orbits, which are
ellipses rather than circles, are explained by an inverse-square
law of force. This achievement, certainly, was the product of
Newton’s genius alone.

In the present chapter we shall be able to discuss the first
of these questions quite fully, using only our basic results in the




THE ORBITS OF THE PLANETS

kinematics and dynamics of particles. The second question
requires us to learn (as Newton himself originally had to) how
to analyze the gravitating properties of a body, like the earth,
which is so obviously not a geometrical point when viewed from
close to its surface. We shall present one approach to the prob-
lem here and complete the story in Chapter 11, where this special
feature of the gravitational problem is discussed. The third
question, concerning the exact mathematical description of the
orbits, is something that we shall not go into at all at this stage;
such orbit problems will be the exclusive concern of Chapter 13.

Fig. 8-1 (a) Motions
of the sun and Venus
as seen from the
earth. Venus always
lies within the angular
range =0, of the
sun’s direction.

(b) Heliocentric
picture of the same

situation.

We have described in Chapter 2 how the knowledge of the
motions of the classical planets—Mercury, Venus, Mars, Jupiter,
and Saturn-—was already exceedingly well developed by the time
of the astronomer Ptolemy around 150 A.p. By this we mean
that the angular positions of these planets as a function of time
had been catalogued with remarkable accuracy and over a long
enough span for their periodic returns to the same position in
the sky to be extremely well known. We have pointed out pre-
viously, however, that the interpretation of such results depends
on the model of the solar system that one uses. Let us now look
more carefully at the original observational data and the con-
clusions that can be drawn from them.

The first thing to recognize is that, whether or not one
accepts the earth as the real center of the universe, it is the
center as far as all primary observations are concerned. From
this vantage point, the motion of each planet can be described,
to a first approximation, as a small circle (the epicycle) whose
center moves around a larger circle (the deferent). Now there
are some facts about the motions of two particular planets—
Mercury and Venus—that point the way to some far-reaching
conclusions. These are

1. That for these two planets, the time for the center C
of the epicycle [Fig. 8-1(a)] to travel once around the deferent
is exactly 1 solar year—i.e., the same time that it takes the sun
to complete one circuit around the ecliptic.

2. The planets Mercury and Venus never get far from the
sun. They are always found within a limited angular range from
the line joining the earth to the sun (about £224° for Mercury,

+46° for Venus). Both of these facts are beautifully accounted
for if we go over to the heliocentric, Copernican system [Fig.
8-1(b)]. We see that the larger circle of Fig. 8-1(a) corresponds
in this case to the earth’s own orbit around the sun, of radius rg,
and the smaller circle—the epicycle—represents the orbit of the
other planet (Venus or Mercury, as the case may be). Given
this interpretation, we can proceed to make quantitative in-
ferences about the radii of the planetary orbits themselves. This
is a crucial advance of the Copernican scheme over the Ptolemaic.
Although Ptolemy had excellent data, they were for him just the
source of purely geometric parameters, but with Copernicus we
arrive at the basis of a truly physical model. Thus in Fig. 8-1(b)
the maximum angular deviation, 6,,, of the planet P from the
earth-sun line ES defines the planet’s orbit radius r by the

equation

L~ sing, (m>r (8-12)
19]

The radius of the earth’s orbit is clearly a natural unit for mea-
suring other astronomical distances, and has long been used
for this purpose:

1 astronomical unit (AU) = mean distance from earth to sun
(1.496 X 101 m)

In terms of this unit, we then have




Fig. 8-2 (a) Motions
of the sun and
Jupiter as seen from
the earth. The

angle 6n here
characterizes the
magnitude of the
retrograde (epicyclic)
motion. (b) Helio-
centric picture of the
same situation.

For Mercury: - r = sin 224° ~ 0.38 AU
For Venus: ra=sind46° =~ 0.72 AU

When it comes to the other planets (Mars, Jupiter, and
Saturn) the tables are turned. These planets are not closely
linked to the sun’s position; they progress through the full 360°
with respect to the earth—sun line. This can be readily explained
if we interchange the roles of the two component circular motions,
so that the large primary circle (the deferent) is taken to be the
orbit of the planet, now larger than that of the earth, and the
epicycle is seen as the expression of the earth’s orbit around the
sun.' In the case of Jupiter, for example, the Ptolemaic picture is
represented by Fig. 8-2(a) and the Copernican picture by Fig;
8-2(b).  Thus the periodic angular swing, =6,,, of the epicycle is
now related to the ratio of orbital radii through the equation

Fig. 8-3  Universe
according to
Copernicus.
(Reproduced from
rg . ; his historic work,
S s (m<r) (8-1b) De Revolutionibus.)

in which the roles of r and 7z are reversed with respect to Eq.
(8-1a)... Ptolemy’s recorded values of 4,, for Mars, Jupiter, and
Saturn were about 41°, 11°; and 6°, respectively. These would
then lead to the following results:

a picture of the planets in their orbits in order of their increasing
distance from the sun. Figure 8-3 is a reproduction of the
historic diagram by which Copernicus displayed the results in
his book (De Revolutionibus) in 1543.

The data with which Copernicus worked (and Ptolemy, too,
1400 years before him) were actually far too good to permit a
simple picture of the planets describing circular paths at con-
stant speed around a common center. Thus Copernicus carried
out a detailed analysis to find out how far the center of the
orbit of each planet was offset from the sun. But even with this
adjustment, the detailed change with time of the angular positions
of the planets could not be fitted unless the motion around the
orbit was made nonuniform. Copernicus, like Ptolemy before
him, introduced auxiliary circular motions to deal with the
problem, but this, as we now know, was not the answer and we
shall not discuss its complexities. For the moment we shall use
the basic idealization of uniform circular orbits and set aside
until later the refinements that were first mastered by Kepler
when he recognized the planetary paths as being ellipses.

For Mars: r=csc4l1° = 1.5AU
For Jupiter: r = csc 11°=~ 52°AU
For Saturn: r = csc6° = 9.5 AU

Thus with the Copernican scheme (and this was its great triumph)
it became possible to use the long-established data to construct

PLANETARY PERIODS

The problem of determining the periodicities of the planets, like
that of finding the shapes of their orbits, must begin with what




Fig. 84 (a) Relative
positions of the sun,
the earth, and Jupiter
at the beginning
(SEJ1) and end
(SEqJ 2) of one
synodic period.

(b) Comparable dia-
gram for the sun; the
earth, and Venus,
allowing for the fact
that Venus must be
offset from the line
between sin and earth
if it is to be visible.

can be observed from the moving platform that is our earth.
The recurring situation that can be most easily recognized is the
one in which the sun, the earth, and another planet return, after
some characteristic time, to the same positions relative to one
another. The length of this recurrence time is known as the
synodic period of the planet in question. In terms of a helio-
centric model of the solar system, this is easily related to the
true (sidereal) period of one complete orbit of the planet around
the sun.

Consider first the case of one of the outer planets, say
Jupiter. Figure 8-4(a) shows a situation that can be observed
from time to time. The positions of the sun, the earth, and
Jupiter lie in a straight line. Observationally this could be
established by finding the date on which Jupiter passes across
the celestial meridian at midnight, thus placing it 180° away
from the sun.®

Now if one such alignment is represented by the positions
E and J; of the earth and Jupiter, the next one will occur rather
more than 1 year later, when the earth has gained one whole
revolution on Jupiter. This is shown by the positions E, and Js.
Jupiter has traveled through the angular distance ¢ while the
earth goes through 27 + 6. Both Ptolemy and Copernicus knew

1The celestial meridian is the projection, on the celestial sphere, of a plane
containing the earth’s axis and the point on the earth’s surface where the
observer is located. It is thus a great circle on the celestial sphere, running
from north to south through the observer’s zenith point, vertically above him.
Noon is the instant at which the sun crosses this celestial meridian in its
daily journey from east to west.

that the length of the synodic period separating these two con-
figurations is close to 399 days. Let us denote the synodic period
in general by the symbol 7. Then if the earth makes ng complete
revolutions per unit time and Jupiter makes n; revolutions per
unit time, we have

HET = n,]T+1

But np and ny are the reciprocals of the periods of revolution
Tg and Ty of the two planets. Thus we have

T T
T _T 1
Ty TJ+

and solving this for T; we have

Ty
= — 8-2
Tr 1= To/r (8-2a)

Putting Tg/7 = 365/399 ~ 0.915, we thus find that

Ty
0.085

Ty = =~ 11.8 yr

The same type of observation and calculation can be applied
to Mars and Saturn and the other outer planets that we now know.
When we come to Venus and Mercury, however, the situation,
as with the determination of orbital radii, is a little different.
First is the practical difficulty that we cannot, at least with the
naked eye, see these planets when they are in line with the sun,
because it would require looking directly toward the sun to do
so. We can easily get around this by considering any other
situation [see Fig. 8-4(b)] in which the angle between the direc-
tions ES and EV is measured. This particular diagram shows
Venus as a morning star, appearing above the horizon 1 hr or so
before the sun as the earth rotates from west to east. The same
value of the angle o will recur after one synodic period. This
takes over 14 yr—about 583 days, to be more precise. In this
case, however, it is Venus that has gained one revolution on the
earth. Thus instead of the form of the equation that applies to
the outer planets, we now have

nyt = I’IET+1

leading to the result

Ty = — 2 (8-2b)




Putting Tz/7 =~ 365/583 = 0.627, we find that

Ty

1627 =~ 224 days

~

Ty

It is a curious fact that Copernicus, in the introductory
general account of his model of the solar system, quotes values
of the planetary periods which are so rough that some of them
could even be called wrong. - These values are marked on his
diagram (Fig: 8-3) and are repeated in his text: Saturn, 30 yr;
Jupiter, 12 yr; Mars,; 2 yr; Venus, 9 months; Mercury, 80 days.
The worst cases are Mars (2 yr instead of about 13) and Venus
(9 months instead of about 74). This seems to have led some
people to think that: Copernicus had only a crude knowledge of
the facts, which was certainly not the case. Perhaps he was
careless about quoting the periods because his real interest was
in the geometrical details of the planetary orbits and distances.
The truth of the matter; in-any event, is that his quantitative
knowledge of both periods and radii, as spelled out in detail
later in his book, was so good that the best modern values do
not, for the most part, differ significantly from the ones he
quoted: This is shown in Table §-1, which lists both the Copern- -
ican and the modern data on the classical planets. (Incidentally,
the values to be extracted from Ptolemy’s data are almost iden-

Fig. 85 Smooth
curve relating the
periods and the orbital
radii of the planets.

TABLE 8-1: DATA ON PLANETARY ORBITS
Orbital radius, AU Synodic period, days Sidereal period

Planet Copernicus Modern Copernicus Copernicus Modern
Mercury 0.376 0.3871 115.88 87.97 days 87.97 days
Venus 0.719 0.7233 538.92 224,70 days 224.70 days
Earth 1.000 1.0000 — 365.26 days 365.26 days
Mars 1.520 1.5237 779.04 1.882 yr 1.881 yr
Jupiter 5.219 5.2028 398.96 11.87 yr 11.862 yr
Saturn 9.174 9.5389 378.09 2944 yr 29.457 yr

tical with those of Copernicus, an astonishing tribute to those
astronomers whose measurements, from about 750 B.Cc. up to
the time of Ptolemy’s own observations around 130 A.D., pro-
vided the basis of his analysis.)

KEPLER'S THIRD LAW

The data of Table 8-1 point clearly to a systematic relationship
between the planetary periods and distances. This is displayed

graphically in Fig. 8-5. The precise form of the relationship was
first discovered by Johann Kepler in 1618 and published by him
the following year in his book The Harmonies of the World.
In it he triumphantly wrote: “I first believed I was dreaming : ..
But it is absolutely certain and exact that the ratio which exists
between the periodic times of any two planets is precisely the

ratio of the $th powers of the mean distances....” Table 8-2
TABLE 8-2: KEPLER'S THIRD LAW
Radius'r of

orbit of planet, Period T, r3/T2,
Planet AU days  (AU)3/(day)? X 108
Mercury 0.389 87.77 7.64
Venus 0.724 224.70 7.52
Earth 1.000 365.25 7.50
Mars 1.524 686.98 7.50
Jupiter 5.200 4,332.62 7.49
Saturn 9.510 10,759.20 7.43

shows the data used by Kepler and a test of the near constancy
of the ratio r3/T2. Figure 8-6 is a different presentation of the
planetary data (actually in this case the data of Copernicus from
Table 8-1) plotted in modern fashion on log-log graph paper so

as to show this relationship:
T ~ r3/2 (8-3)

This is known as Kepler’s third law, having been preceded, 10
years earlier, by the statement of his two great discoveries (quoted




Fig. 86 Log-log
plot of planetary
period T versus orbit
radius r, using data
quoted by Copernicus.
The graph shows that
T is proportional to
r3/2 (Kepler’s third
law).

in the Prologue) concerning the elliptical paths of the individual
planets.

The dynamical explanation of Kepler’s third law had to
await Newton’s discussion of such problems in the Principia.
A very simple analysis of it is possible if we again use the sim-
plified picture of the planetary orbits as circles with the sun at
the center. It then becomes apparent that Eq. (8-3) implies that
an inverse-square law of force is at work. For in a circular orbit
of radius » we have

~ ‘GKO

ap = —

Expressing v in terms of the known quantities, » and T, we have

ar = =~ (toward the center) (8-4)
From Newton’s law, then, we infer that the force on a mass in a
circular orbit must be given by

da® mr

F, = ma, = — '-]Tz_ (8-5)

From Kepler’s third law, however, we have the relation

3
¥

m=K (8-6)
where K might be called Kepler’s constant—the same value of it
applies to all the planets traveling around the sun. From Eq. (8-6)
we thus have 1/T2 = K/r3, and substituting this in Eq. (8-5)
gives us

F,= — ——= (8-7)

The implication of Kepler’s third law, therefore, when
analyzed in terms of Newton’s dynamics, is that the force on a
planet is proportional to its inertial mass m and inversely pro-
portional to the square of its distance from the sun. Newton’s
contemporaries Halley, Hooke, and Huygens all appear to have
arrived at some kind of formulation of an inverse-square law in
the planetary problem, although Newton’s, in terms of his
definite concept of forces acting on masses, seems to have been
the most clear-cut. The general idea of an influence falling off
as 1/r? was probably not a great novelty, for it is the most
natural-seeming of all conceivable effects—something spreading
out and having to cover spheres of larger and larger area, in
proportion to 2, so that the intensity (as with light from a source)
gets weaker according to an inverse-square relationship.

The proportionality of the force to the attracted mass, as
required by Eq. (8-7), was a feature of which only Newton
appreciated the full significance. With his grasp of the concept
of interactions exerted mutually between pairs of objects, Newton
saw that the reciprocity in the gravitational interaction must
mean that the force is proportional to the mass of the attracting
object just as it is to the mass of the attracted. Each object is
the attracting agent as far as the other one is concerned. Hence
the magnitude of the force exerted on either one of a mutually




gravitating pair of particles must be expressed in the famous
mathematical statément of universal gravitation:

L e (8-8)

where G is a constant to be found by experiment, and m, and m
are the inertial masses of the particles. We shall return to the
matter of determining G in practice, but first we shall discuss
the famous problem that led Newton toward some of his greatest
discoveries concerning gravitation.

THE MOON AND THE APPLE

1t is an old story, but:still an enthralling one, of how Newton,
as a young man of 23; came to think about the motion of the
moon in a way that nobody had ever done before. The path of
the moon: through space, as referred to the “fixed” stars, is a
line of varying curvature (always, however, bending toward the
sun), which crosses and recrosses the earth’s orbit. But of course
there is a much more striking way. of looking at it—the familiar
earth-centered view, which shows the moon describing an ap-
proximately circular orbit around the earth.. To this extent it is
quite like the planetary-orbit problem that we have just been
discussing. But Newton, with his extraordinary insight, con-
structed an intellectual bridge between this motion and the
behavior of falling objects—the latter being such a commonplace
phenomenon that it needed a genius to recognize its relevance.
He saw the moon as being just an object falling toward the earth
like any other—as, for example, an apple dropping off a tree in
his garden. A very special case, to be sure, because the moon was
so much farther away than any other falling object in our ex-
perience. But perhaps it was all part of the same pattern. '

As Newton himself described it,’ he began in 1665 or 1666
to think of the earth’s gravity as extending out to the moon’s
orbit, with an inverse-square relationship already suggested by
Kepler’s third law. We could of course just restate the cen-
tripetal acceleration formula and apply it to the moon, but it is
illuminating to trace the course of Newton’s own way of dis-
cussing the problem. In effect he said this: Imagine the moon
at any point A in its orbit (Fig. 8-7). If freed of all forces, it

1See the Prologue of this book.

Fig. 87 Geometry of a small
portion of a circular orbit, show-
ing the deviation y from the
tangential straight-line displace-
ment AB (= x) that would be
followed in the absence of gravity.

would travel along a straight line 4B, tangent to the orbit at A.
Instead, it follows the arc AP. If O is the center of the earth
the moon has in effect “fallen” the distance gp toward O eveI;
though its radial distance r is unchanged. [¢¢ us caleul ate’: how
far the moon falls, in this sense, in 1 sec, apg compare it with
the distance of about 16 ft that an object Projected horizontally
near the earth’s surface would fall in that same time.

First, a bit of analytic geometry. If we denote the distance
AB as x, and the distance BP as y, it will be 5 exceedingly good
approximation to put

> (8-9)

One way of obtaining this result is to consider . .
th ht t 1
ONP, in which we have © Hght triangle

ON=r—y NP = x OP =y

Hence, by Pythagoras’ theorem,

2

Il

r— ) + x*
2

r

x 2ry — y2

Since y < r for any small value of the angle 6, Eq. (8-9) follows
as a' good approximation. Furthermore, since (aga.in for small 6)
the arc length AP (= s) is almost equal to the distance AB. we
can equally well put ’
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y (3-10)

In order to put numbers into this formula we need to know
both the radius and the period of the moon’s orbital motion.
The distance to the moon, as known to Newton, depended on the
two-step process devised by the ancient astronomers—finding
the earth’s radius and finding the moon’s distance as a multiple
of the earth’s radius. A reminder of these classic measurements
is given in Figs. 8-8 and 8-9 and the accompanying discussion
(pp. 259-261). The final result, familiar to everyone, is that the
moon’s orbit radius » is about 240,000 miles =~ 3.8 X 10%m.
Its period T is 27.3 days = 2.4 X 10°sec. Therefore, in 1 sec it
travels a distance along its orbit given by

_2r X 38 x 10°

(ln 1 SEC) s = —W =~ 1000 m

During this same time it falls a vertical distance, which we will
denote yy to identify it, given [via Eq. (§-10)] by

10°

B i e —3
T < 10° 13X 10 "m

(in 1 sec)
In other words, in 1 sec, while traveling “horizontally” through
a distance of 1 km, the moon falls vertically through just over
1 mm, or about 5% in.; its deviation from a straight-line path is
‘indeed slight. On the other hand, for an object near the earth’s
surface, projected horizontally, the vertical displacement in
1 sec is given by

ye = 3gt2 = 49m

Thus
yi o -4 1
o 27X 10 " = 3700

Newton knew that the radius of the moon’s orbit was about
60 times the tadius of the earth itself, as the ancient Greeks
had first shown. And with an inverse-square law, if it applied
equally well at all radial distances from the earth’s center, we
would expect y,/y, to be about 1/3600. It must be right!
And yet, what an astounding result. Even granted an inverse-
square law of attraction between objects separated by many
times their diameters, one still has the task of proving that an

fell at 7.2° to the verti-

object a few feet above the earth’s surface is attracted as though
the whole mass of the earth were concentrated at a point 4000
miles below the ground. Newton did not prove this result until
1685, nearly 20 years after his first great insight into the problem.
He published nothing, either, until it all came out, perfect and
complete, in the Principiain 1687. One way of solving the problem
follows on p. 262 (after the special section below).

FINDING THE DISTANCE TO THE MOON

The earth’s radius

About 225 B.c. Eratosthenes, who lived and worked at Alexandria
near the mouth of the Nile, reported on measurements made on
the shadows cast by the sun at noon on midsummer day. At
Alexandria (marked A4 in Fig. 8-8) the sun’s rays made an angle
of 7.2° to the local vertical, whereas corresponding measurements
made 500 miles farther south at Syene (now the site of the
Aswan Dam) showed the sun to be exactly overhead at noon.
(In other words, Syene lay almost exactly on the Tropic of
Cancer.) It follows at once from these figures that the arc A4S,
of length 500 miles, subtends an angle of 7.2° or grad at the
center of the earth. Hence

500 _ 1
Ry 8

or
Ry =~ 4000 miles

Fig. 8-8 ' Basis of the
method used by
Eratosthenes to find
the eartl’s radius.
When the midday sun
was exactly overhead
at Syene (S) its rays

cal at -Alexandria (A).




The moon’s distance measured in earth radii

Hipparchus, a Greek astronomer who lived mostly on the island
of Rhodes, made observations in about 130 B.C. from which he
obtained a remarkably accurate estimate of the moon’s distance.
His method was one suggested by another great astronomer,
Aristarchus, about 150 years earlier.

The method involves a clear understanding of the positional
relationships of sun, earth, and moon. We know that sun and
moon subtend almost exactly the same angle o at the earth.
Hipparchus measured this angle to be 0.553° (=~1/103.5 rad); he
also knew what Aristarchus before him had found—that the
sun is far more distant than the moon. Hipparchus used this
knowledge in an analysis of an eclipse of the moon by the earth
(Fig. 8-9). The shaded region indicates the area that is in com-
plete shadow; its boundary lines P4 and QB make an angle «
with one another, because this is the angle between rays coming
from the extreme edges of the sun. The moon passes through the
shadowed region, and from the measured time that this passage
took, Hipparchus deduced that the angle subtended at the earth
by the arc B4 was 2.5 times that subtended by the moon itself.
Thus LZAOB =~ 2.5a.

Let us now do some geometry. If the distance from the
earth’s center to the moon is D, the length of the arc BA is very
nearly equal to the earth’s diameter PQ diminished by the
amount aD:

AB = 2Ry — aD

Fig. 8-9  Basis of the method used by Hipparchus to Jfind
the moort’s distance. The method depended on observing
the duration (and hence the angular width) of the moon’s
total eclipse in the shadow of the earth, as represented by
the arc AB.

But we also have

Substituting this in the first equation we have

THE GRAVITATIONAL ATTRACTION OF A LARGE SPHERE

éblz =~ 2.5«

AB = 250D

3.5aD =~ 2Rg

R 3.5«

Since «

Combining this with the value of Ry itself, we have

D = 236,000 miles

Modern methods

Refined triangulation techniques give a mean value of 3,422.6”,
or 0.951°, for the angle subtended at the moon by the earth’s

radius. Using the modern value of the earth’s radius

(Rg = 6378 km = 3986 miles)

one obtains almost exactly 240,000 miles for the moon’s mean
distance. Such traditional methods, however, are far surpassed
by the technique of making a precision measurement of the time
for a radar echo or laser reflection to return to earth. The flight
time of such signals (only about 2.5 sec for the roundtrip) can
be measured to a fraction of a microsecond, giving range deter-
minations that are not only of unprecedented accuracy but are

also effectively instantaneous.

It has Jong been suggested that Newton’s failure to publicize
his discovery about an inverse-square law of the earth’s gravity




extending to the moon was due primarily to an actual numerical
discrepancy, resulting from his use of an erroneous value for the
earth’s radius. This would, via Eq. (8-10), falsify the value of
the moon’s distance of fall, since r (the radius of the moon’s
orbit) was calculated, according to the method discovered by
Hipparchus, in terms of the earth’s radius. When Newton first
did the calculation he was home in the countryside, out of reach
of reference books, and it is reliably recorded that he calculated
the earth’s radius by assuming that 1° of latitude is 60 miles,
instead of the correct figure of nearly 70 miles. Be this as it may,
it remains almost certain that Newton, with his outstandingly
thorough and critical approach to problems, would never have
regarded the theory as complete until he had solved the problem
of gravitation by large objects. Let us now consider a way of
analyzing this problem. (In Chapter 11 we shall tackle it again
in a more sophisticated way.)

Suppose we have a large solid sphere, of radius R, as shown
in Fig. 8-10(a), and wish to calculate the force with which it at-
tracts a small object of mass m at an arbitrary point P. We shall
assume that the density of the material of the sphere may vary
with distance from the center (as is the case for the earth, to a
very marked degree) but that the density is the same at all points
equidistant from the center. . We can then consider the solid
sphere to be built up of a very large number of thin uniform

Fig. 8-10 (a) A solid sphere can be regarded as built
up of a set of thin concentric spherical shells. (b) The
gravitational effect of an individual shell can be found
by treating it as an assemblage of circular zones.

Our task now is to sum the contributions such as dF, over the

spherical shells, like the successive layers of an onion. The total
gravitational effect of the sphere can be calculated as the super-
position of the effects of all these individual shells. Thus the
basic problem becomes that of calculating the force exerted by a
thin spherical shell of arbitrary radius, assuming that the funda-
mental law of force is that of the inverse square between point
masses.

In Fig. 8-10(b) we show a shell of mass M, radius R, of
negligible thickness, with a particle of mass m at a distance r
from the center of the shell. If we consider a small piece of the
shell, near point 4, the force that it exerts on m is along the line
AP. Tt is clear from the symmetry of the system, however, that
the resultant force due to the whole shell must be along the line
OP; any component of force transverse to OP due to material
near A will be canceled by an equal and opposite contribution
from material near 4’. Thus if we have an element of mass diM
near 4, we need only consider its contribution to the force along
OP, i.e., the radial direction from the center of the shell to m.
Hence we have

dF, = — — cos ¢ 8-11)
SZ

Let us now consider a complete belt or zone of the shell, shown
shaded in the diagram. It represents the portion of the shell that
is contained between the directions 8 and 6 + dé to the axis OP,
and the same mean values of s and ¢ apply to every part of it.
Thus, if we calculate its mass, we can substitute this value as
dM in Eq. (8-11) to obtain the contribution of the whole belt to
the resultant gravitational force along OP. Now the width of
the belt is R d@ and its circumference is 2w R sin 4; thus its area
is 27R? sin 6 d9. The area of the whole shell is 4xR?; hence the
mass of the belt is given by

_ 2rR%sin 0 db

M .
dM = — RS M = —sinfdf

2
Thus Eq. (8-11) gives us

GMm cos ¢ sin 8 df
2

dF, = —

(8-12)
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whole of the shell, i.e., over the whole range of values of s, ¢,
and 6. This looks like a formidable task, but with the help of a
little calculus (another of Newton’s inventions!) the solution
turns out to be surprisingly straightforward.
From the geometry of the situation [Fig. 8-10(b)], it is
possible to express both of the angles § and ¢ in terms of two
fixed distances, » and R, and the variable distance s. By two
separate applications of the cosine rule we have
2R 2R
—_— oS =

cos f =
2rR 2rs

From the first of these, by differentiation, we have

. sds
0do = ——
sin 8 d0 R

Hence, substituting the values of cos ¢ and sin 6 d6 in Eq. (8-12),
we obtain

- GMm (r2 —+- 2= R2) ds
4rZR 52

dF, =

The total force is found by integrating this expression from the
minimum value of s (= r — R) to its maximum value (» + R).
Thus we have

F, =

HE o 2 2
GMm — R
/ r s ds (8-13)

4r2R r—R $2

The integral is just the sum of two elementary forms; we have

2 P 2
4+ 5 —R 2 9 ds
/———W ds /ds—i—(r—R)/S—2
2 2

r — R
§—

Il

S

Inserting the limits, we then find that

r+R2
/ or +s2——R2
-

—R S2

ds = [(r + R) — (r — R)]

2R P2_g

_<r+R a r—-R)
=2R— (¢ =R+ (C+R
= 4R

Substituting this value of the definite integral in Eq. (8-13) we
have
_ GMm

F, = = (8-14)

What a wonderful result! It is of extraordinary simplicity, and
the radius R of the shell does not appear at all. It is uniquely a
consequence of an inverse-square law of force between particles;
no other force law would yield such a simple result for the net
effect of an extended spherical object.

Once we have Eq. (8-14), the total effect of a solid sphere
follows at once. Regardless of the particular way in which the
density varies between the center and the surface (provided that
it depends only on R) the complete sphere does indeed act as
though its total mass were concentrated at its center. It does
not matter how close the attracted particle P is to the surface
of the sphere, as long as it is in fact outside. Take a moment to
consider what a truly remarkable result this is. Ask yourself: Is
it obvious that an object a few feet above the apparently flat
ground should be attracted as though the whole mass of the
earth (all 6,000,000,000,000,000,000,000 tons of it!) were con-
centrated at a point (the earth’s center) 4000 miles down? It is
about as far from obvicus as could be, and there can be little
doubt that Newton had to convince himself of this result before
he could establish, to his own satisfaction, the grand connection
between terrestrial gravity and the motion of the moon and
other celestial objects.

OTHER SATELLITES OF THE EARTH

Newton’s thinking quite explicitly embraced the possibility—at
least theoretically—of having other satellites of the earth. Figure
8-11 is an illustration from Newton’s book, The System of the
World (which is incorporated in the Principia); it shows the
transition from the effectively parabolic trajectories of short-
range projectiles (although the apparent parabolas are really
small parts of ellipses) to a perfectly circular orbit and then to
other elliptic orbits of arbitrary dimensions.

Let us derive the formulas for the required velocity v and
the period T of a satellite launched horizontally in a circular
orbit at a distance r from the center of the earth. The necessary




Fig. 8-11 Newton’s
diagram showing the
transition from normal
parabolic trajectories
to complete orbits
encircling the earth.
(From The System of
the World.)

force to maintain circular motion is provided by gravitational
attraction:

2

mv G Mgm
r r2

where M is the mass of the earth, m the mass of the satellite;
and G the universal gravitational constant. Solving for v,

GMz 1/2

¥

(8-15)

U =

It is often convenient to express this result in terms of more

familiar quantities. We can do this by noticing that, for an

object of mass m at the earth’s surface, the gravitational force
on it, by Eq. (8-8), is

_ GMEm

F, Rp2

But this is the force that can be set equal to mg for the mass in
question. Hence we have

mg = ———m
Rg?
or
2
GMg = gRg

Substituting this in Eq. (8-15), we get

2\ 1/2
gRg

r

U =

The period, T, of the satellite is then given by

3/2
2mr 2wr

T=""=

» g\ 2Ry (8-16)

Putting g = 9.8 m/sec?, Rp = 6.4 X 10°m, we have a nu-
merical formula for the period of any satellite in a circular orbit
of radius 7 around the earth:

(Earth satellites) T = 3.14 X 10~73/2 (8-17)

where T is in seconds and r in meters.
For example, a satellite at minimum practicable altitude
(about 200 km, say), has r = 6.6 X 10° m, and hence

T = 53 % 103 sec = 90 min

The first man-made satellite, Sputnik I (October 1957) had
an orbit as shown in Fig. 8-12(a). Its maximum and minimum
distances from the earth’s surface were initially 228 and 947 km,
respectively, giving a mean value of r equal to about 6950 km.

Fig. 8-12 (a) Orbit of Sputnik I, the first man-made
satellite (October 1957). (b) Synchronous satellite com-
munication system. Orbital diameter in relation to
earth’s diameter is approximately to scale.




THE VALUE OF G, AND THE MASS OF THE EARTH

With this value of r, Eq. (8-17) gives an orbital period of about
96 min, which agrees closely with the observed figure.

Particular interest attaches to synchronous satellites that
have an orbital period equal to the period of the earth’s rotation
on its axis. If placed in orbit in the earth’s equatorial plane, such
satellites will remain above the same spot on the earth’s surface,
and a set of three of them, ideally in a regular triangular array
as shown in Fig. 8-12(b), can provide the basis of a worldwide
communications system with no blind spots. Putting 7' = 1 day
in Eq. (8-17), one finds r = 42,000 km or 26,000 miles. Thus
such satellites must be about 22,000 miles above the earth’s sur-
face, i.c., about 5% earth radii overhead. The first such satellite
to be successfully launched was Syncom II in July 1963.

Equation (8-16), on which the above calculations are based,
has a very noteworthy feature. A satellite traveling in a circular
orbit of a given radius has a period independent of the mass of
the satellite. Thus a massive spaceship of many tons will, for
the same value of r, have precisely the same orbital period as a
flimsy object such as one of the Echo balloons, with a mass of only
about 100 kg——or; for that matter, a small piece of interplanetary
debris with a mass of only a few kilograms. This result is a
direct consequence of the fact that the gravitational force on
any object is strictly proportional to its own mass.

Although the result expressed by Eq. (8-14) was obtained by
considering a large sphere and a small particle, one can quickly
convince oneself that it is also the correct statement of the force
between any two spherical objects whose centers are a distance
rapart. For suppose that we have two such spheres, as shown
in Fig. 8-13(a). The calculation that we have carried out shows
that one sphere (say the one on the left) attracts every particle
of the other as if the left-hand mass were a point [Fig. 8-13(b)].
This therefore reduces the problem to the mutual gravitational
attraction between a sphere (the right-hand sphere, of mass m)
and a point particle of mass M. But now we can apply the result
of the last section a second time. Thus we arrive at Fig. 8-13(c),
with two point masses separated by a distance 7, as a rigorously
correct basis for calculating the force of attraction between the
two extended masses shown in Fig. 8-13(a).

The above result is important in the analysis of the experi-
ment, already described in Chapter 5; for finding the universal

Fig. 8-13 (a) Two gravitating spheres at small separa-
tion. (b) Effect of one sphere (M) can be calculated by
treating it as a point mass. (c) The argument can be
repeated, so that the attraction between the spheres can
be calculated as though both were point masses.

gravitation constant, G, from the measured force between two
spheres of known masses. In order to get the biggest possible
effect with an interaction that is so extremely weak, it is usual
to arrange things so that the centers of the spheres are separated
by only a little more than the sum of the radii. It is then a great
convenience to be able to calculate the force, even under these
conditions, on the basis of Eq. (8-14). Notice, however, that
the result holds only for spheres. Some of the measurements to
determine G have made use of cylindrical masses, because of the
greater ease of machining them to high precision. In such cases
it becomes necessary to calculate the net force by an explicit
integration over the spatial distribution of material.

The presently accepted value of G, as obtained from labora-
tory measurements of the force exerted between two known
masses, is (as already quoted in Chapter 5):

G = 6.670 X 10~11 m3/kg-sec? (8-18)

Newton himself did not know the value of G, although he made
a celebrated guess at the mean density of the earth, from which
he could have obtained a conjectural figure. In Book III of the
Principia, he remarks at one point as follows: “Since . . . the
common matter of our earth on the surface thereof is about
twice as heavy as water, and a little lower, in mines, is found
about three, or four, or even five times heavier, it is probable
that the quantity of the whole matter of the earth may be five
or six times greater than if it consisted all of water . .. e

If we denote the mean density of the earth as p and its radius
as R, the gravitational force exerted on a particle of mass m just
at the earth’s surface is given by




GMm
F="% (8-19)
where
4
- ?T oR?
Hence

4
F= ?’r (GoR)m

Since, however, this is just the force that gives the particle an
acceleration g in free fall, we also have

F = mg
It follows, then, that

47
g= = GpR (8-20)
If in this equation we put g =~ 9.8 m/sec?, R =~ 6.37 X 106 m,
and (using Newton’s estimate) p =~ 5000 to 6000 kg/m?3, we
find that

G = (6.7 = 0.6) X 1011 m3/kg-sec?

Thus Newton’s estimate was almost exactly on target. In prac-
tice, of course, the calculation is done the other way around.
Given the directly determined value of G [Eq. (8-18)] we sub-
stitute in Egs. (8-19) and (8-20) to find the mass and the mean
density of the earth. The result of these substitutions (with
R = 6.37 X 10°m) is

M = 597 X 102*kg
p = 552 X103 kg/m?3

LOCAL VARIATIONS OF g

If we take the idealization of a perfectly spherical, symmetrical
earth, then the gravitational force on an object of mass m at a
distance # above the surface is given by

GMm

i il i
(R + h)2

.

If we identify F with m times the value of g at the point in ques-
tion, we have

GM

R+ 02 (8-21)

gh) =

For h < R, this would imply an almost exactly linear decrease
of g with height. Using the binomial theorem, we can rewrite
Eq. (8-21) as follows:

GM AN
g(h) Rz <1 + ;>

Hence, for small /4, we have

g(h) = go (1 = %) (8-22)

where go = GM/R?, the value of g at points extremely close to
the earth’s surface. [Alternatively, we can use a calculus method
that can be extremely useful whenever we want to consider the
fractional variation of a quantity. It is based on the fact that the
differentiation of the natural logarithm of a quantity leads at
once to the fractional variation. In the present case we have

GM
g(r) = =
r

Therefore,

Ing = const. — 2Inr

Differentiating,
58 o gl
g I

Hence, putting » = R, g = go, and Ar = h, we have

h
Ag = —2g0~
r

which leads us back to Eq. (8-22). Notice how this method
frees us of the need to concern ourselves with the values of any
multiplicative constants that appear in the original equation—
e.g., the value of GM in the equation for g. A recognition of this
fact can enable one to avoid a lot of unnecessary arithmetic in




the computation of small changes of one quantity that depends
upon another according to some well-defined functional re-
Iationship.]

Newton’s contemporary, Robert Hooke,; made  several
efforts to detect a variation of the gravitational attraction with
height. He did this by looking for any changes in the measured
weights of objects at the tops of church towers and the bottoms
of deep wells. Not surprisingly, he was unable to find any dif-
ference. By Eq. (8-22) one would have to ascend to a point
about 1000 ft above ground (e.g., the top of the Empire State
Building) before the decrease of g was even as great as 1 part in
10,000. As we shall see in a moment, however, such variations
are detected with the greatest of ease by modern techniques.

Superimposed on the systematic variations of the gravita-
tional force with height are the variations produced by in-
homogeneities in the material of the earth’s crust. For example,
if one is standing above a subterranean deposit of salt or sand,
much lower in density than ordinary rocks, one would expect the
value of g to be reduced. Such changes, although extremely
small, can be measured with remarkable accuracy by modern
instruments and have become a very valuable tool in geophysical
prospecting.

Almost all modern gravity meters are static instruments, in
which a mass is in equilibrium under the combined action of
gravity and an elastic restoring force supplied by a spring. In
other words, it is just a very sensitive spring balance. A change
in g as the instrument is moved from one point to another leads
to a minute change in the equilibrium position, and this is de-
tected by sensitive optical methods or electrically by, for ex-
ample, making the suspended mass part of a tuned circuit whose
capacitance, and hence frequency, is changed by the slight
displacement. To be useful, such instruments must be capable
of detecting fractional changes of g of 10~7 or less. Figure
8-14(a) shows the basic construction of one such device. With
it one can trace out contours of constant g over a region of
interest. Figure 8-14(b) shows the results of such a survey, after
allowance has been made for effects due to varying altitude,
surface features, and so on. Such contours can give good in-
dications of ore concentrations. The primary unit of measure-
ment in these gravity surveys is known as the gal (after Galileo):

Fig. 8~14 (a) Sketch of basic features of a sensitive
gravimeter, made of fused quartz. The arm marked W
acts as the main weight. It is pivoted at A and B and
carries a pointer P. The restoring force is provided by a
control spring S1 and a null reading can be obtained
with the help of the calibrated spring S». (b) Example
of a gravity survey over an area about 400 by 500 m,
with contours of constant g indicating an ore deposit.
(After a survey made by the Boliden Mining Co.,
Sweden, and reproduced in D. S. Parasnis, Mining

lgal = 1 cm/sec? =~ 10~3 g Geophysics, Elsevier, Amsterdam, 1960.)




THE MASS OF THE SUN

This is far too large for convenience, so most surveys, like that
of Fig. 8-14(b), show contours labeled in terms of milligals
(1 mgal = 107? cm sec? =~ 107 °%g). Under the best conditions,
relative measurements accurate to 0.01 mgal may be achievable,
One can appreciate how impressive this is by noting that g
change of g by 0.01 mgal (1 part in 10%) corresponds to a change
in elevation of only about 3 cm at the earth’s surface!

Let us return to the simple picture of the solar system in which
each planet describes a circular orbit about a fixed central sun
(Fig. 8-15). We have seen, in the discussion of Kepler’s third
law, how the use of Newton’s law of motion implies that the
force on the planet is given, in terms of its mass, orbital radius,
and period, by the following equation [Eq. (8-5)]:

2
4" mr

Fr= -

According to the basic law of the force, however, as expressed
by Newton’s law: of universal- gravitation [Eq. (8-8)], the value
of F, is given by the equation

where M is the mass of the sun.. From the equality of these two

expressions, we obtain the following result:
23

o dr’r

= 8-23

T GM ( )

We may again note the feature, already commented on in: con-

Fig. 815 Planetary orbit approxi-
mated by a circle with the suir at the
center.

nection with earth satellites, that the period is independent of the
mass of the orbiting object, in this case the earth itself or some
other planet. What does matter is the mass of the sun, and if we
turn Eq. (8-23) around, we have an equation that tells us the
value of this mass, M, in terms of observable quantities:

4r® ¥P
M = < T (8-24)
Kepler’s third law expresses the fact that the value of 73/72 is
indeed the same for all the planets. The statement of this result
does not, however, require the use of absolute values of r—or,
for that matter, of T either. It'is sufficient to know the values
of » and T for the various planets as multiples or fractions of the
earth’s orbital radius and period: "In order to deduce the mass
of the sun from Eq. (8-24), however, the use of absolute values is
essential. We have seen; earlier in this chapter, how the length
of the earth’s year has been known with great accuracy since the
days of antiquity. A knowledge of the distance from the earth
to the sun is, however, rather recent. The development of this
knowledge makes an interesting story, which is summarized in
the special section following. The final result, expressed as a
mean distance in meters, can be substituted as the value of 7 in
Eq. (8-24), along with the other necessary quantities as follows:

rg = 1.50 X 1011 m
Ty = 3.17 X 107 sec
G = 6.67 X 1011 m3/kg-sec?

We then find that

My = 2.0 X 1030 kg

FINDING THE DISTANCE TO THE SUN

The first attempt to estimate the distance of the sun was made
by the great Greek astronomer, Aristarchus, in the third century
B.C., and he arrived at a result which, although quite erroneous,
held the field for many centuries. His method, sound in principle
but made ineffectual by the great remoteness of the sun, is in-
dicated in Fig. 8-16(a). He knew that one half of the moon was
illuminated by the sun and that the phases of the moon were
the result of viewing this illuminated hemisphere from the earth.




the planet Mars. When Mars is closest to the earth, it lies on a
line joining both planets to the sun. Under these conditions the
distance between them is the difference between their orbital
radii. Now if Mars is viewed from two different points on the
earth, it should appear in slightly different directions with respect
to the vastly more distant background of “fixed” stars. The
particular angular difference, 8, for observers placed at 4 and B
is called the parallax; it is the angle subtended by the earth’s
radius at the position of Mars. To measure this angle one does
not need to have observers at two different points on the earth;
the rotation of the earth itself would carry an observer from A4
to B in about 6 hr during a given night. - Now Kepler was able
to deduce from the very careful observations of his master,
Tycho Brahe, that the value of § must be less than 3 minutes of
arc, which is about 1/1200rad; he could conclude- that the
distance to Mars in this configuration must be greater than 1200
earth radii or about 5 million miles. Then, using the known
relative values of orbital radii from the Copernican scheme
(Table 8-1), it follows that the distance of the sun from the earth
is more than 2400 earth radii, i.e., more than 10 million miles.
John Flamsteed, a contemporary of Newton to whose
observations Newton owed a great deal (he was Astronomer
Royal from 1675 to 1720), reduced the upper limit on the parallax
of Mars to about 25 seconds of arc, and concluded that the sun’s
distance was at least 80 million miles. An Italian astronomer,
Cassini, arrived at a specific value of about 87 million miles at
about the same time, using observations made by himself in
Europe and by a French astronomer, Richer, at Cayenne in
South America. Another contemporary of Newton’s—Edmund
Halley'—proposed a method that finally led, 100 years later, to
the first precision measurements of the sun’s distance. The method
involved what is known as a transit of Venus, i.e., a passage of
Venus across the sun’s disk, as seen from the earth. Figure
8-16(c) illustrates the basis of the method. As it passes across
the sun, Venus looks like a small black dot. Its apparent path,
and also the times at which the transit begins or ends, depend on
the position of the observer on earth. Since the motion of Yenus

Fig. 8-16 (a) Method attempted by Aristarchus to find
the sui’s distance by measuring the angle SEM at half-
moon. (b) Triangulation method of establishing the
scale of the solar system by finding the distance of
Mars, using the earth’s radius as a base line. (c) Direct
determination of the sun’s distance by observing the
transit of Venus from different points on the earth.

When the moon is exactly half full, the angle SME is 90°. If, in
this situation, an exact measurement can be made of the angle 6,
the difference in directions of the sun and moon as seen from a
point on the earth, we can deduce the angle o (= 90° — 6)
subtended at the sun by the earth-moon distance rj;. Aristarchus
judged @ to be about 87°, which gives a = 3° = &5 rad and
hence s = 20ry. Since, however, the measured angle is 8 and
not «, the error in the final result may be (and is) very great.
Our present knowledge tells us that the value of 4 in the situation
represented by Fig. 8-16(a) is actually about 89.8° instead of
87°; this relatively small change in 9 raises the ratio rg/rar to
several hundred instead of 20.

A completely different attack on the problem was initiated
by Kepler, although its full exploitation was not possible until
much later. Even so it at once became clear that the sun is
more distant than Aristachus had concluded. ' The basis of the
method is indicated in Fig. 8-16(b). It involves observations on

"Edmund Halley, best known for the comet named after him, succeeded
‘Flamsteed in 1720 as ‘Astronomer Royal. Long before this, however, he had
been very active in physics and astronomy. He became a devoted friend and
admirer. of Newton, and it was largely through his help and persuasion that
the Principia was published.




Fig. 817 Measure-
ment of the diameter
of the earth’s orbit by
observing the eclipses
of Jupiter’s moons
and the apparent
delays due to the
travel time of light
through space.

is accurately known, the timing of the transit can be used to
vield accurate measures of the differences in angular positions
of Venus as seen by observers at different positions. From such
observations the parallax of Venus can be inferred, after which
one can use an analysis just like that for Mars. These transits
are fairly rare, because the orbits of the earth and Venus are not
in the same plane, but Halley pointed out that a pair of them
would occur in 1761 and 1769, and again in 1874 and 1882, and
then in 2004 and 2012, From the first two of these (both occurring
long after Halley’s own death) the solar parallax was found to be
definitely between about 8.5 and 9.0 seconds of arc, correspond-
ing to a distance of between about 92 and 97 million miles. Thus
the currently accepted result was approached. (The best mea-
surements of this type have been made on the asteroid Eros at
its closest approach to the earth.) _

Further: refinements came with the observations made in
the late nineteenth century. One of the most notable of these
was the use of an accurately known value of the speed of light
to deduce the diameter of the earth’s orbit from the accumulated
time lag, over a period of 6 months, in the observed eclipses
of the:moons of Jupiter. The situation is indicated in Fig. §8-17.
While the earth moves from E; to E,, Jupiter moves only from
J1 to Jo. This introduces an extra transit time of about 16 min
for the light that tells us that one of Jupiter’s moons has, for
example, just appeared from behind the planet. Knowing that
the speed of light is 186,000 miles/sec in empty space, we can
deduce that the earth’s orbital radius is equal to this speed times
about 480 sec, or about 90 million miles. (The calculation was
originally done just the other way around, by the Danish astron-
omer Roemer in 1675. Using an approximate value of the
distance from earth to sun, he made the first quantitative estimate
of the speed of light.)

MASS AND WEIGHT

turns -out: that, in each and every instance, the gravitational
charge is strictly proportional to an independently established
quantity, the inertial mass.. Is this just a remarkable coincidence,

Although the modern measurements of the sun’s distance
are of great accuracy, we must still reckon with the fact that
this distance varies during the course of a year. If we ignore this
relatively small variation, however, we can make use of the
average value, already quoted near the beginning of this chapter:

rg=1AU = 1496 X 101 m

Perhaps the most profound contribution that Newton made to
science was the fundamental connection that he recognized be-
tween the inertial mass of an object and the earth’s gravitational
force on it—a force roughly equal to the measured weight of the
object. (Remember, we have defined weight as the magnitude
of the force, as measured for example on a spring balance, that
holds the object at rest relative to the earth’s surface.)

It had been known since Galileo’s time that all objects near
the earth fall with about the same acceleration, g. Until Newton
it was just a kinematic fact. But in terms of Newton’s law it
took on a much deeper significance. If an object is observed to
have this acceleration, there must be a force F, acting on it given
by F = ma, ic.,

F, = mg (8-25)

It then becomes a vitally significant dynamical fact that, since
the acceleration g is the same for all objects, the force ¥, causing
it is strictly proportional to the inertial mass. To appreciate how
remarkable this result is, imagine starting from scratch to in-
vestigate the force of attraction between two objects in a purely
static experiment. One measures the force by balancing it with
a springlike device—a torsion fiber. One finds a quantity, which
might be called (by analogy with electrical interactions) a gravita-
tional charge, ¢,. This “charge” is characteristic of any object
and has, as far as these experiments are concerned, nothing at all
to do with the inertial mass, which is defined solely in terms of
acceleration (under the action of forces produced, for example, by
stretched springs). One experiments with objects of all sorts of
materials, in different states of aggregation, and so on. It then




Fig. 8-18 (a) Weigh-
ing with an equal-arm
balance—in effect a
direct comparison of
masses, valid whatever
the value of g.

(b) Weighing with a
spring balance—a
measurement of the
gravitational force,
directly dependent on
the value of g.

or does it point to something very fundamental? For a long time
this apparent coincidence was regarded as one of the unexplained
mysteries of nature. It took the sagacity of an Einstein to suspect
that gravitation may, in a sense, be equivalent to acceleration:
Einstein’s “postulate of equivalence,” that the gravitational
charge g, and the inertial mass m are measures of the samig
quantity, provided the basis of his own theory of gravitation as
embodied in the general theory of relativity. We shall come back
to this in Chapter 12, when we discuss noninertial frames of
reference.

We are quite accustomed to exploiting the proportionality
of F, to m in our use of the equal-arm balance [Fig. 8~18(a)].
What we are doing is balancing the torques of two forces, but
what we are actually interested in is the equality of the amounts
of material. We make use of the fact that, to very high accuracy,
the value of g is the same at the positions of both masses, and
we do not need to bother about what its particular value is:
Thanks to the proportionality of gravitational force to mass, we
could, with an equal-arm balance and a set of standard weights,
measure out a required quantity of any substance equally well
on the earth, the moon; or Mars. The spring balance [Fig.
8-18(b)], on the other hand, has a calibration that depends
directly on a particular value of g. Its readings are in effect
readings of force, even though we use them as a basis for mea-
suring out required amounts of mass. We might find it con-
venient to use a spring balance for this purpose on the moon,
but if its scale were marked in kilograms, we should have to
mask this out and attach a fresh calibration with the help of
standard masses.

Fig. 8-19 Forces acting on the bob of a simple
pendulum,

Newton himself recognized that the strict proportionality
of the gravitational force to the inertial mass, as evidenced by the
identical local acceleration of falling objects, was a key feature
in his own statement of universal gravitation as expressed in
Eq. (8-8). He therefore made a series of very careful pendulum
experiments to test whether a pendulum of a given length, but
with a variety of objects used as the bob, always had the same
period. To see how this works, consider an object of inertial
mass m hung on a string (Fig. 8-19). The two forces on it (ignor-
ing air resistance) are the tension T and the gravitational force F,.
The tension T is at every instant perpendicular to the path of the
pendulum bob and so has no effect on the tangential acceleration
ap. The tangential acceleration is due to the tangential com-
ponent of F,. From Fig. 8-19,

Fo = may = —F,siné
from which

ag = —(F,/m)sin @ (8-26)

At every angle 6 the acceleration ay depends on the ratio F,/m.
Therefore—for given initial conditions—the velocity of the bob
at every angle 6 will be determined by this ratio. So also the
period for one complete round trip will depend upon the ratio
(Fg/m). Newton observed the periods of pendulums with dif-
ferent bobs but with equal lengths. From his observation that
the periods of all such pendulums were equal within his experi-
mental error, Newton concluded that F, was proportional to m
to better than 1 part in 1000.

More recent experiments (beginning with Baron Eotvos in
Budapest in the nineteenth century) have made use of a very
clever idea that permits a static measurement. It depends on
recognizing that an object hanging ar rest relative to the earth in
fact has an acceleration toward the earth’s axis because, by
virtue of the earth’s rotation, it is traveling in a circular path of
radius » = R cos \, where X is the latitude (see Fig. 8-20). This
means that a net force of magnitude mw?r must be acting on it,
where m is the inertial mass. How is this force provided? The
answer is that, when a body hangs on a string near the earth’s
surface, the string, exerting a force T, is not in quite the same




Fig. 8-21 Principle
of the E0tvos torsion-
balance measurement:
(a) Two approximately
equal masses hang
from a torsion bar.
(b) If the objects do
not have identical
ratios of inertial to
gravitational mass, the
tensions in the sus-
pending strings must
be in slightly different
directions. In equilib-
rium, the direction of
the main supporting
Siber must be interme-
diate between the
directions of Ty and
Ta. (c) This implies
the possibility of a net
torque that twists the
torsion bar about a
vertical axis.

Fig. 8-20 Basis of the Eidtués
method for comparing the inertial
mass and the gravitational mass of
an object that is at rest relative to
the earth and hence is being acceler-
ated toward the earth’s axis.

direction as the gravitational force F,. And if F, is not strictly
proportional to m, the angle between T and F, will be different
for different objects. To search for any such variations, a very
sensitive torsion balance is used, carrying dissimilar objects at
the two ends of a horizontal bar [Fig. 8-21(a)]. If the directions
of the tensions Ty and T are different [Fig. 8-21(b)], there will
be small horizontal components [Fig. 8-21(c)] that act in op-
posite directions with respect to the horizontal bar but that give
torques in the same sense. On the other hand, if the directions
of T; and T, are identical, even if their magnitudes are not
quite the same, there is no net torque tending to twist the torsion
fiber. To test for the existence of any such torque, E6tvos placed
the whole apparatus in a case that could be rotated. The hori-

Fig. 822 To see
whether a net forque
exists in the Edtvos
experiment, the whole
apparatus is turned
through 180°. This
would reverse the
sense of the torque.

ny Ny

zontal beam carrying the two masses was aligned in an east-west
direction [Fig. 8-22(a)] and a reading was taken of its position
with tespect to the case. The whole system was then rotated
through 180°, as in" Fig. 8-22(b). If you analyze both situations
on the basis of Fig. 8-21, you will find that, with respect to the
center line of the case, the ahgle of twist would be reversed by
this operation; hence, if any net torque existed, its existence
would be revealed.

More recently, some elegant modernized experiments of
this type have been performed by R. H. Dicke and his collab-
orators.! By such experiments it has been shown that the strict
proportionality of F, to m holds to 1 part in 10*° or better.

The description of the above experiments points to a closely
related phenomenon—a systematic variation with latitude of the
measured weight of an object. If we take the idealization of a
perfectly spherical earth (Fig. 8-23), the equilibrium of the object
is maintained by applying a force of magnitude ¥ at an angle «
to the radius such that the following conditions are satisfied:

Wsina = mw?rsin A

2

Fyg — Wcosa = mwrcos A

where » = Rcos)\. Since « is certainly a very small angle, it is
justifiable to put cos « = 1 in the second equation, thus giving
the result

W = F, — mw?R cos? \

1See R. H. Dicke; Sci. Am., 205, 84 (Dec. 1961).




Fig. 8-23 The force needed to
balance the weight of an object is
different in both direction and magni-
tude from the force of gravity.

It follows that
W) = Wo + mw?Rsin?\

where W, is the measured weight on the equator. Putting
Wo = mg,, we can also obtain a corresponding expression for
the latitude dependence of g:

g\) = go + w?Rsin2 )

If in this expression we substitute w = 2x/86,400 sec™! and
R = 6.4 X 10°m, we find w?R =~ 3.4 X 1072 m/sec?, which
with go =~ 9.8 m/sec? gives us

g(\) = 9.8(1 + 0.0035sin?\) . m/sec?

This formula is more successful than it deserves to be, for we
have no right to ignore the significant flattening of the earth,
due again to the rotation, which makes the equatorial radius
of the earth about 1 part in 300 greater than the polar radius.
This ellipticity has two consequences: It puts a point on the
equator farther away from the earth’s center than it otherwise
would be, but it also in effect adds an extra belt of gravitating
material around the equatorial region. The resultant value of g
at sea level, taking these effects into account, is quite well de-
scribed by the following formula:

g(\)y = 9.7805(1 + 0.00529 sin? \) (8-27)

Thus our simple calculation has the correct form, but its value
for the numerical coefficient of the latitude-dependent correction
is only about two thirds of the true figure.

WEIGHTLESSNESS

1t is appropriate, after the detailed discussion of the relations
among mass, gravitational force, and weight, to devote a few
words to the property that is called weightlessness. The very
explicit distinction that we have drawn between the gravitational
force on an object and its measured weight makes use of what is
called an operational definition of the latter quantity. The weight,
as we have defined it, is the magnitude of the force that will
hold an object at rest relative to the earth. Our definition of
weightlessness derives very naturally from this: An object is
weightless whenever il is in a state of completely free fall. In this
state each part of the object undergoes the same acceleration,
of whatever value corrésponds to the strength of gravity at its
location. (In saying this we assume that g does not change ap-
preciably over the linear extent of the object.) An object that
is prevented from falling, by being restrained or supported,
inevitably has internal stresses and deformations in its equi-
librium state. This may become very obvious, as when a drop
of mercury flattens somewhat when it rests on a horizontal sur-
face. All such stresses and deformations are removed in the
weightless state of free fall. The mercury drop, for example, is
free to take on a perfectly spherical shape.

The above definition of weightlessness can be applied in
any gravitational environment, and this is the way it should be.
The bizarre dynamical phenomena of life in a space capsule do
not depend on getting into regions far from the earth, where the
gravitational forces are much reduced, but simply on the fact that
the capsule, and everything in it, is falling freely with the same
acceleration, which in consequence goes undetected. For ex-
ample, if a spacecraft is in orbit around the earth, 200 km above
the earth’s surface, the gravitational force on the spacecraft,
and on everything in it, is still about 959, of what one would
measure at sea level, but the phenomena associated with what
we call weightlessness are just as pronounced under these con-
ditions as they are in another spacecraft 200,000 miles from earth,
where the earth’s gravitational attraction is down to zsgg of that
at the earth’s surface. In both situations an object released inside
the spacecraft will remain poised in midair. The same would
be true in a spacecraft that was simply falling radially toward
the earth’s center rather than pursuing a circular or elliptical
orbit around the earth. When viewed in these terms the phe-




nomena of weightlessness are not in the least mysterious, al-
though they are still startling because they conflict so strongly
with our normal experience.

LEARNING ABOUT OTHER PLANETS

The recognition of the universality of gravitation gives us a
powerful tool for obtaining information about planets other
than the earth, and indeed about celestial objects in general. In
particular, if a planet has satellites of its own, we can find its
mass by an analysis exactly similar to the one we used for de-
ducing the mass of the sun from the motions of the planets
themselves. This provides the simplest way of finding the mass
of any planet that has satellites. Such satellites, if a planet has
more than one of them, also provide a further test of Kepler’s
third law, taking the planet itself as the central gravitating body.

Newton himself applied an analysis of this kind to Jupiter,
using data for its four most prominent satellites. These were
the satellites (or “moons’) that made history when Galileo dis-
covered them with his new astronomical telescope in 1610 (see
pp- 287-290). Figure 8-24(a) shows their changing positions as
seen through a modern telescope, and Fig. 8-24(b) reproduces a
few of the sketches that Galileo himself made, night after night,
over a period of many months. Figure 8-24(c) is a graph con-
structed from Galileo’s quantitative records, using the readings
that can be unambiguously associated with the outermost of the
four satellites. A period of about 16 days can be inferred. Galileo
had no hesitation in interpreting his observations in terms of the
four satellites following circular orbits that were seen edgewise—
giving, as we would describe it, the appearance of simple harmonic
motion at right angles to our line of sight. On the basis of further
measurements Galileo arrived at rather accurate values of the
orbital periods of all four satellites and at moderately good values
of the orbital radii expressed as multiples of the radius of Jupiter
itself.

Newton, in the Principia, used similar data of greater pre-
cision, obtained by his contemporary John Flamsteed. Table 8-3
(p. 290) lists these data, and in Fig. 8-25 they are plotted loga-
rithmically (cf. Fig. 8-6) in such a way as to show how they give
another demonstration of the correctness of Kepler’s third law.
The slope is accurately 3.

The use of Jupiter’s radius as a unit for measuring the
orbital radii was not merely a convenience. As we have already

noted in our discussion of the mass of the sun, the absolute scale
of the solar system was not known with any great certainty in
Newton’s day. It is interesting, however, that using the data as
presented in Table 8-3, without absolute values of the radii,
one can deduce the mean density, ps, of Jupiter. By analogy
with our analysis of earth satellites [p. 266, and in particular
Eq. (8-15)], we have

_ 2 (oM
U_T_ r

whence
23
A7°r
Mr=Grs
Putting
A7
My = 3 PJRJ3
we get
3 n3
VT

Substituting n3/7% =~ 7.5 X 107 %sec™, and G = 6.67 X
10711 m3/kg-sec?, we find

pr = 1050 kg/m?3

i.e., about the same density as water.

If a planet does not have satellites of its own, the magnitude
of its mass may be inferable from a detailed analysis of the tiny
disturbing effects—called perturbations—that planets exert on
one another’s orbits. This technique has been used for Mercury
and Venus. The unraveling of these mutual interactions is a
complicated and difficult matter, however, and in at least one
case it posed a problem that was not adequately answered for a
long time. This was the interaction between the two most
massive planets, Jupiter and Saturn, which caused irregularities
of ‘a very puzzling kind in the orbits of both. It was even con-
sidered possible that the basic law of gravitation would need to
be modified slightly away from a precise inverse-square relation-
ship. The solution to the mystery was finally achieved, almost a
century after the publication of the Principia, by the French
mathematician Laplace, building on work by his great fellow
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successful telescope. Galileo learned of this, and soon made telescopes of his
own design. His third instrument, of more than 30 diameters’ magnification,
led him to a dramatic discovery, as recounted by him in his book, The Starry
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Messenger :

“On the seventh day of January in this present year 1610, at the first

— ? R
N . p ¥*
b4 5 a_gﬁo\f_;e:

LGOM *' *
hour of the night, when I was viewing the heavenly bodies with a telescope, % q 4 ~ v;O.
Jupiter presented itself to-me, and . . . I perceived that beside the planet * DrH s % [
there were three small starlets, small indeed, but very bright. Though I P = .

f s 2 bl .
believed them to be among the host of fixed stars, they aroused my curiosity O /‘@p 2o peon Hz ** ‘{" ® g Altha
somewhat by appearing to lie in an exact straight line parallel to the ecliptic 7 e - f-df /\M‘ 7 Bar: #"A“

- I paid no attention to the distances between them and Jupiter, for at the * \T;L__/*vfo% = ; g
outset I thought them to be fixed stars, as I have said. But returning to the Gigo bt~ wio o O HF
O *4' 7 7z = Bz
same investigation on January eighth — led by what, I do not know — I found )
a very different arrangement. . . .” ~ . - !
Fow. - & & * o O_* ¥ |

A few more nights of observation were enough to convince Galileo what he was
seeing: ‘I had now [by January 11} decided beyond all question that there existed
in the heavens three stars wandering about Jupiter as do Venus and Mercury
about the sun. . . . Nor were there just three such stars; four wanderers complete
théir revolutions about Jupiter. . . .- Also I measured the distances between them
by means of the telescope. . .. Moreover I recorded the times of the observa-
tions . . . for the revolutions of these planets are so speedily completed that it is
usually possible to take even their hourly variations.”

Fig. 8-24(a) Jupiter
and its four most
prominent satellites as
seen through a modern
telescope. The first
and second photo-
graphs illustrate
Galileo’s observa-

tion that noticeable
changes occur within a
single night. (Yerkes
Observatory photo-
graphs)

Fig. 8-24(c) 4 graph
constructed from
Galileo’s own records,
showing the periodic
motion of Callisto, the
Qutermost. of the four
satellites visible to
him. The period of
about 16 .3/4 days is
clearly exhibited.

Fig. 8-24(b) Facsimile of a page of Galileo’s own
handwritten records of his observations during the later
months (July-October) of 1610.




Fig. 8-25 A log-log
graph displaying the
applicability of
Kepler’s third law to
the Galilean satellites
of Jupiter. It may be
seen that Galileo’s
results are little dif-
ferent from those ob-
tained by John Flam-

steed nearly 100 years

later.

countryman Lagrange. It turned out that a curious kind of
resonance effect was at work, resulting from the fact that the
periods of Jupiter and Saturn are almost in a simple arithmetic

TABLE 8-3: DATA ON SATELLITES OF JUPITER®

Satellite n = r/Ry Period (T) n3/T2, sec—2
Io 5.578 1.7699 days ~ 1.53 X 105sec 7.4 X 109
Europa 8.876  3.5541 days = 3.07 X 10%sec 7.5 X 10~9
Ganymede 14.159 7.1650 days =~ 6.19 X 10%sec 7.5 X 10~?
Callisto 24903 16.7536 days =~ 1.45 X 10%sec 7.4 % 10—

“These same data have been presented in a striking way in Eric Rogers,
Physics for the Inquiring Mind, Princeton University Press, Princeton,
N.J., 1960:

r, T2,
Satellite (miles)? (hours)?
Io 1.803 x 1016 1.803 x 102
Europa 7.261 X 1016 7.264 % 103
Ganymede 29.473 X 1016 29.484 X 10°
Callisto 160.440 X 1016 160.430 X 103

How would you convince your friends that this close numerical coin-
cidence is not evidence of a new fundamental law ?

THE DISCOVERY OF NEPTUNE

relationship (5T; = 2T). This made large an otherwise negligible
term in the perturbation, with a repetition period so long
(~900 yr) that it seemed to be increasing without limit. When
the mystery was finally resolved the belief in Newton’s theory
was, of course, strengthened still further.

Probably the most vivid illustration of the power of the gravita-
tional theory has been the prediction and discovery of planets
whose very existence had not previously been suspected. It is
noteworthy that the number of known planets remained un-
changed from the days of antiquity until long after Newton.
Then, in 1781, William Herschel noticed the object that we now
know as Uranus. He was engaged in a systematic survey of the
stars, and his only clue to start with was that the object seemed
slightly less pointlike than the neighboring stars. Then, having
a telescope with various degrees of magnification, he confirmed
that the size of the image increased with magnification, which
is not true for the stars—they remain below the limit of resolution
of even the biggest telescopes, and always produce images in-
distinguishable from those due to ideal point sources.

Once his attention had been drawn to the object, Herschel
returned to it night after night and confirmed that it was moving
with respect to the other stars. Also, as has happened in various
other cases, it was found that the existence of the object had in
fact been recorded in earlier star maps (first by John Flamsteed
in 1690). These old data suddenly became extremely valuable,
because they were a ready-made record of the object’s move-
ments dating back through nearly a century. When combined
with new measurements carried out over many months, they
showed that the object (finally to be called Uranus) was indeed
a member of our solar system, following an almost circular orbit
with a mean radius of 19.2 AU and a period of 84 years.

This is where our main story begins. Once it was discovered,
Uranus and its motions became the subject of a continuing study,
and evidence began to accumulate that there were some ex-
tremely small irregularities in its motion that could not be
ascribed to perturbing effects from any known source. Figure
8-26(a), a tribute to the wonderful precision of astronomical
observation, shows the anomaly as a function of time since 1690.
The suspicion began to grow that perhaps there was yet another
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what Adams and LeVerrier used.
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Fig. 8-26 (a) Unexplained residual deviations in the
observed positions of Uranus between 1690 and 1840.

(b) Basis of ascribing the deviations to the influence of
an extra planet. The arrows indicate the relative mag-

Fig. 827 G
nitude of the perturbing force at different times. raph for

Dredicting the orbital
radius of the new
Dlanet with the help of
Bode’s law.

planet beyond Uranus, unknown in mass, period, or distance.
Two men—1J. C. Adams in England and U. J. LeVerrier in
France—independently worked on the problem. Both men used




Fig. 8-28 Star map
showing the discovery

of Neptune, September

23, 1846. (From
Herbert Hall Turner,
Astronomical Dis-
covery, Edward
Arnold, London,
1904.)

Given the radius, the period is automatically defined by
Kepler’s third law, and then it becomes possible to construct a
definite picture, as shown in Fig. 8-26(b), of the way in which
the new planet could alternately accelerate and retard Uranus
in its orbital motion, depending on their relative positions. With
the help of laborious analysis, one can then deduce where in its
orbit the new planet should be on a particular date. Adams
supplied such information in October 1845 to the British Astron-
omer Royal, G. B. Airy, who acknowledged Adams’ letter,
raised a question of detail, but otherwise did nothing. LeVerrier
did not complete his own calculations until August 1846, but
the astronomer to whom he wrote (J. G. Galle, in Germany)
made an immediate search and identified the new planet
(Neptune) on his very first night of observation. It was only
about a degree from the predicted position (see Fig. 8-28). The
next night it had visibly shifted, thereby confirming its planetary
status.

Although the discovery of Neptune is in some respects a
great success story, it is also a story of Iuck, both good and bad,
and of human frailty.. 'Adams was really first in the field, but he
received no support from his seniors (he was fresh from his
bachelor’s degree when he began his calculations). Airy missed

the credit, which he might readily have won, of being the man
who first identified Neptune. But the locations that both Adams
and LeVerrier predicted might well have been hopelessly mis-
leading, for in their reliance on Bode’s law they used an orbital
radius (and hence a period) that was far from correct. The true
value is about 30 AU instead of nearly 40 as they had assumed,
which means that they overestimated the period by nearly 50%.*
It was therefore largely a lucky accident that the planet was so
near to its predicted position on the particular date that Galle
sought and found it. But let this not be taken as disparagement.
A great discovery was made, with the help of the laws of motion
and the gravitational force law, and it remains as the most
triumphant confirmation of the dynamical model of the universe
that Newton invented.? The discovery of Pluto by C. Tombaugh
in 1930, on the basis of a detailed record of the irregularities of
Neptune’s own motion, provided an echo of the original achieve-
ment.

GRAVITATION OUTSIDE THE SOLAR SYSTEM

When Newton wrote his System of the World, nothing was
known about the distances or possible motions of the stars.
They simply provided a seemingly fixed background against which
the dynamics of the solar system proceeded. There were ex-
ceptions. A few prominent stars—e.g., Sirius—known since
antiquity by naked-eye astronomy, were found to have shifted
position within historic time. But the serious and systematic
investigation of stellar motions was begun by William Herschel.
His observations, continued and refined by his son John Her-
schel and by other astronomers, revealed two classes of results.
The first was the continuing apparent displacement of individual
stars in a way that suggested that the solar system is itself in-
volved in a general movement of the stars in our neighborhood,
at a speed of the order of 10 miles/sec (comparable to the earth’s
own orbital speed around the sun). This, as it stood, was just
an empirical fact. But the second type of result pointed directly
IThis also means that they overestimated the mass necessary to produce the

observed perturbations of Uranus. LeVerrier gave a figure of about 35 times
the mass of the earth; the currently accepted value is about half this.

2For a detailed account of the whole matter, see H. H. Turner, Astronomical
Discovery, Edward Arnold, London, 1904. A shorter but more readily
accessible account may be found in an essay entitled “John Couch Adams
and the Discovery of Neptune,” by Sir H. Spencer Jones, in The World of
Mathematics (J. R. Newman, ed.), Simon and Schuster, New York, 1956.




(a)

Fig. 8-29 Variation
with time of the rela-
tive position vector of
the members of a
double-star system.
(After Arthur Berry,
A Short History of
Astronomy, 1898,
reprinted by Dover
Publications, New
York, 1961.)

Fig. 8-30 (a) Motion
of the members of a
binary star system
with respect to the
center of mass, C, for
the case of circular
orbits.. (b)Y Direct
visual evidence of the
motion of a binary
system—Krueger 60,
photographed by E. E.

X . Barnard. (Yerkes
to. the operation of Newton’s dynamics. For the Herschels Observatory photo-

discovered numerous pairs of stars that were evidently orbiting graph.)
around one another as binary systems. Figure 8-29 shows one
of the best documented early examples, and the first to be sub-
Jected to a detailed analysis in terms of Kepler’s laws. (It is
£-Ursae, in one of the hind paws of the constellation known as
the Great Bear.)

The period of a binary star depends on the fotal mass of the
system, not on the individual masses. This is easily proved in
the case in which the orbits are assumed to be circles around the
common center of mass [see Fig. 8-30(a)].' The individual
stars are always at opposite ends of a straight line passing through
the center, C. If we write the statement of F = ma for one of the
stars, say mj, we have

(b)

However, by the definition of the center of mass, we have

mo -
¥l
my -+ ma

where
r=ri+re
It follows at once that
2 G(mi + mz)
o2 = T me)
2 r3
Moy nivy

2
= = muwr
(r1 + ro)? r 1@

Thus if the distance r between the stars can be obtained by
direct astronomical observation (e.g., starting from a knowledge
of their angular separation), the sum of the masses is at once
determined. Finding the individual masses entails the somewhat
harder job of measuring the motion of each star in absolute
terms against the background of the “fixed” stars. Figure 8-30(b)
shows convincing direct evidence of the orbital motion of an
actual binary system.

where w (= 2x/T) is the angular velocity common to both stars.
Hence

2 Gmg
ri(r1 + r2)?

For a full discussion of the concept of center of mass, see Ch. 9, p. 337.




proximate gravitating mass, inside the orbit, that would define

% i this motion. From Eq. (8-24) we have
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With G = 7 X 107" m?/kg-sec?, we find that

40 ><3><1o61
T 7 x 1071t 76 X 108!

M ~ 3 x 10" kg

Since the mass of the sun (a typical star) is about 2 X 103° kg,
we see that a core of about 10! stars is implied. This is not
really a figure that can be independently checked. It is a kind
of ultimate tribute to our belief in the universality of the gravita-
tional law that it is confidently used to draw conclusions like
those above concerning masses of galactic systems.

EINSTEIN’S THEORY OF GRAVITATION

We have described earlier how Newton recognized that the
proportionality of weight to inertial mass is a fact of fundamental
significance; it played a central role in leading him to the con-
clusion that his law of gravitation must be a’ general law of
nature. For Newton this was a strictly dynamical result, ex-
pressing the basic properties of the force law. But Albert Einstein,
in 1915, looked at the situation through new eyes. For him the
fact that all objects fall toward the earth with the same accelera-
tion g, whatever their size or physical state or composition,
implied that this must be in some truly profound way a kinematic
or geometrical result, not a dynamical one. He regarded it as
being on a par with Galileo’s law of inertia, which expressed the
tendency of objects to persist in straight-line motion.

Building on these ideas, Einstein developed the theory that
a planet (for example) follows its characteristic path around the
sun because in so doing it is traveling along what is called a
geodesic line—that is to say, the most economical way of getting
from one point to another. His proposition was that although
in the absence of massive objects the geodesic path is a straight
line in the Euclidean sense, the presence of an extremely massive
object such as the sun modifies the geometry locally so that the
geodesics become curved lines. The state of affairs in the vicinity

Fig. 8-31 Rotating
galaxy (spiral galaxy
NGC 5194 in the
constellation Canes
Venatici). (Photo-
graph from the Hale
Obseruvatories.)

With the development of modern astronomy, the systematic
motions of our sun and its neighbors came to be seen as part
of a greater scheme of movements controlled by gravity. All
around us throughout the universe were the immense stellar
systems—the galaxies—most of them vividly suggesting a state
of general rotation, as in Fig. 8-31, for example. The most
difficult structure to elucidate was the one in which we ourselves
are embedded, i.e., the Milky Way galaxy. It finally became
clear, however, that its basic structure is very much like that of
Fig. 8-31, and that in it our sun is describing some kind of orbit
around the center, with a radius of about 3 X 102%m (~ 30,000
light-years) and an estimated period of about 250 million years
(=~ 8 X 10'%sec). Using these figures we can infer the ap-




of a massive object is, in this view, to be interpreted not in terms
of a gravitational field of force but in terms of a “curvature of
space”—a facile phrase that covers an abstract and mathe-
matically complex description of non-Euclidean geometries.

For the most part the Einstein theory of gravitation gives
results indistinguishable from Newton’s; the grounds for pre-
ferring it might seem to be conceptual rather than practical.
But in one celebrated instance of planetary motions there is a
real discrepancy that favors Einstein’s theory. This is in the
so-called “precession of the perihelion” of Mercury. The phe-
nomenon is that the orbit: of Mercury, which is' distinctly el-
liptical in shape, very gradually rotates or precesses in its own
plane, so that the major axis is along a slightly different direction
at the end of each complete revolution. Most of this precession
(amounting to about 10 minutes of arc per century) can be
understood in terms of the disturbing effects of the other planets
according to Newton’s law of gravitation.® But there remains a
tiny, ‘obstinate residual rotation equal to 43 seconds of arc per
century. The attempts to explain it on Newtonian theory—for
example by postulating an unobserved planet inside Mercury’s
own orbit-—all came to grief by conflicting with other facts of
observation concerning the solar system.. Einstein’s theory, on
the other hand; without the use of any adjustable parameters,
led to a ‘calculated precession rate that agreed exactly with
observation. It corresponded; in effect; to the existence of a very
small force with a different’ dependence on distance than the
dominant 1/72 force of Newton’s theory. The way in which a
disturbing effect of this kind causes the orbit to precess is dis-
cussed in Chapter 13. Other empirical modifications of the
basic law of gravitation—small departures from the inverse-
square law—had been tried before Einstein developed his theory,
but apart from their arbitrary character they also led to false

predictions for the other planets. In Einstein’s theory, however, .

it emerged automatically that the size of the disturbing term was
proportional to the square of the angular velocity of the planet
and hence was much more important for Mercury, with its
short period, than for any of the other planets.

IThe apparent amount of precession as viewed from the earth is actually
about 1.5° per century, but most of this is due to the continuous change in
the direction of the earth’s own axis (the precession of the equinoxes — S€¢
Chapter 14).

PROBLEMS

8-1 Given a knowledge of Kepler’s third law as it applies to the
solar system, together with the knowledge that the disk of the sun
subtends an angle of about 4° at the earth, deduce the period of a
hypothetical planet in a circular orbit that skims the surface of the sun.

82 1t is well known that the gap between the four inner planets and
the five outer planets is occupied by the asteroid belt instead of by a
tenth planet. This asteroid belt extends over a range of orbital radii
from about 2.5 to 3.0 AU. Calculate the corresponding range of
periods, expressed as multiples of the earth’s year.

8-3 Tt is proposed to put up an earth satellite in a circular orbit with
a period of 2 hr.
(a) How high above the earth’s surface would it have to be?
(b) If its orbit were in the plane of the earth’s equator and in
the same direction as the earth’s rotation, for how long would it be
continuously visible from a given place on the equator at sea level ?

84 A satellite is to be placed in synchronous circular orbit around
the planet Jupiter to study the famous “red spot” in Jupiter’s lower
atmosphere. How high above the surface of Jupiter will the satellite
be? The rotation period of Jupiter is 9.9 hr, its mass M is about
320 times the earth’s mass, and its radius Ry is about 11 times that
of the earth. You may find it convenient to calculate first the gravita-
tional acceleration gy at Jupiter’s surface as a multiple of g, using the
above values of My and Ry, and then use a relationship analogous to
that developed in the text for earth satellites [Eq. (8-16) or (8-17)].

8-5 A satellite is to be placed in a circular orbit 10 km above the
surface of the moon. What must be its orbital speed and what is the
period of revolution?

86 A satellite is to be placed in synchronous circular earth orbit.
The satellite’s power supply is expected to last 10 years. If the maxi-
mum acceptable eastward or westward drift in the longitude of the
satellite during its lifetime is 10°, what is the margin of error in the
radius of its orbit?

8-7 The springs found in retractable ballpoint pens have a relaxed
length of about 3 cm and a spring constant of perhaps 0.05 N/mm.
Imagine that two lead spheres, each of 10,000 kg, are placed on a
frictionless surface so that one of these springs just fits, in its un-
compressed state, between their nearest points.

(a) How much would the spring be compressed by the mutual
gravitational attraction of the two spheres? The density of lead is
about 11,000 kg/m?3.




(b) Let the system be rotated in the horizontal plane. At what
frequency of rotation would the presence of the spring become ir-
relevant to the separation of the masses?

8-8 During the eighteenth century, an ingenious attempt to find the
mass of the earth was made by the British Astronomer Royal, Nevil
Maskelyne. He observed the extent to which a plumbline was pulled
out of true by the gravitational attraction of a mountain. The figure
illustrates the principle of the method. The change of direction of the
plumbline was measured between the two sides of the mountain.
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(This was done by sighting on stars.) After allowance had been made
for the change in direction of the local vertical because of the curvature
of the earth, the residual angular difference o was given by 2Fy;/Fg,
where =+ Fs is the horizontal force on the plumb-bob due to the moun-
tain, and Fy = GMgzm/Rg?. (m is the mass of the plumb-bob.)

The value of « is about 10 seconds of arc for measurements on
opposite sides of the base of a mountain about 2000 m high. Suppose
that the mountain can be approximated by a cone of rock (of density
2.5 times that of water) whose radius at the base is equal to the height
and whose mass can be considered to be concentrated at the center
of the base. Deduce an approximate value of the earth’s mass from
these figures. (The true answer is about 6 X 102*kg.) Compare the
gravitational deflection « to the change of direction associated with
the earth’s curvature in this experiment.

8-9 1Imagine that in a certain region of the ocean floor there is a
roughly cone-shaped mound of granite 250 m high and 1 km in diam-
eter. The surrounding floor is relatively flat for tens of kilometers in
all directions. The ocean depth in the region is 5 km and the density
of the granite is 3000 kg/m?. Could the mound’s presence be de-
tected by a surface vessel equipped with a gravity meter that can
detect a change in g of 0.1 mgal?

(Hint: Assume that the field produced by the mound at the
surface can be approximated by the field of a mass point of the same
total mass located at the level of the surrounding floor. Note that in
calculating the change in g you must keep in mind that the mound
has displaced its own volume of water. The density of water, even at
such depths, can be taken as about equal to its surface value of about
1000 kg/m?3.

8—10 Show that the period of a particle that moves in a circular orbit
close to the surface of a sphere depends only on G and the mean
density of the sphere. Deduce what this period would be for any
sphere having a mean density equal to the density of water. (Jupiter
almost corresponds to this case.)

811 Calculate the mean density of the sun, given a knowledge of G,
the length of the earth’s year, and the fact that the sun’s diameter
subtends an angle of about 0.55° at the earth.

8-12 An astronaut who can lift 50 kg on earth is exploring a planetoid
(roughly spherical) of 10 km diameter and density 3500 kg/m3.

(a) How large a rock can he pick up from the planetoid’s surface,
assuming that he finds a well-placed handle?

(b) The astronaut observes a rock falling from a cliff. The
rock’s radius is only 1 m and as it approaches the surface its velocity
is 1 m/sec. Should he try to catch it? (This is obviously a fanciful
problem. One would not expect a planetoid to have cliffs or loose
rocks, even if an astronaut were to get there in the first place.)

8-13 Tt is pointed out in the text that a person can properly be termed
“weightless” when he is in a satellite circling the earth. The moon isa
satellite, yet it is noted in many discussions that we would weigh L of
our normal weight there. Is there a contradiction here?

8-14 A dedicated scientist performs the following experiment. After
installing a huge spring at the bottom of a 20-story-high elevator shaft,
he takes the elevator to the top, positions himself on a bathroom scale
inside the airtight car with a stopwatch and with pad and pencil to
record the scale reading, and directs an assistant to cut the car’s
support cable at ¢ = 0. Presuming that the scientist survives the
first encounter with the spring, sketch a graph of his measured weight
versus time from 7z = 0 up to the beginning of the second bounce.
(Note: Twenty stories is ample distance for the elevator to acquire
terminal velocity.)

8-15 A planet of mass M and a single satellite of mass M/10 revolve
in circular orbits about their stationary center of mass, being held
together by their gravitational attraction. The distance between their
centers is D.

(a) What is the period of this orbital motion?

(b) What fraction of the total kinetic energy resides in the
satellites ?
(Ignore any spin of planet and satellite about their own axes.)

8-16 We have considered the problem of the moon’s orbit around
the earth as if the earth’s center represented a fixed point about which
the motion takes place. In fact, however, the earth and the moon
revolve about their common center of mass.




(a) Calculate the position of the center of mass, given that the
earth’s mass is 81 times that of the moon and that the distance be-
tween their centers is 60 earth radii.

(b) How much longer would the month be if the moon were of
negligible mass compared to the earth?

8-17 The sun appears to be moving at a speed of about 250 km/sec
in a circular orbit of radius about 25,000 light-years around the center
of our galaxy. (One light-year =~ 10'® m.) The earth takes 1 year to
describe an almost circular orbit of radius about 1.5 X 101! m around
the sun. What do these facts imply about the total mass responsible
for keeping the sun in its orbit? Obtain this mass as a multiple of the
sun’s mass M. (Note that you do not need to introduce the numerical
value of G to obtain the answer.)

8-18 (A good problem for discussion.) In 1747 Georges Louis Lesage
explained the inverse-square law of gravitation by postulating that
vast numbers of -invisible particles were flying through space in all
directions at high: speeds.: Objects like the sun and planets block these
particles, leading to a shadowing effect that has the same quantitative
result as a gravitational attraction. Consider the arguments for and
against this theory,

(Suggestion:: First consider a theory in which opaque objects
block the particles completely.. This proposal is fairly easy to refute.
Next consider a theory in which the attenuation of the particles by
objects is incompléete or even very small. This theory is much harder
to dismiss.)

8-19 The continuous output of energy by the sun corresponds (through
Einstein’s relation E = Mc?) to a steady decrease in its mass M, at
the rate of about 4 X 10° tons/sec. This implies a progressive in-
crease in the orbital periods of the planets, because for an orbit of a
given radius we have T ~ M—1/2 [¢f Eq. (8-23)].

A precise analysis of the effect must take into account the fact
that as M decreases the orbital radius itself increases—the planets
gradually spiral away from the sun. However, one cam get an order-
of-magnitude estimate of the size of the effect, albeit a little bit on the
low side, by assuming that r remains constant. (See Problem 13-21
for a more rigorous treatment.)

Using the simplifying assumption of constant r, estimate the
approximate increase in the length of the year resulting from the sun’s
decrease in mass over the time span of accurate astronomical ob-
servations—about 2500 years.

8-20 1t is mentioned at the end of the chapter how Einstein’s theory
of gravitation leads to a small correction term on top of the basic
Newtonian force of gravitation. For a planet of mass m, traveling at
speed v in a circular orbit of radius r, the gravitational force becomes

in effect the following:

2
5 GMm (1 + 60_>
r2 c2

where ¢ is the speed of light. (Correction terms of the order of v2/c2
are typical of relativistic effects.)

(a) Show that, if the period under a pure Newtonian force
GMm/r? is denoted by Ty, the modified period T is given approxi-
mately by

127r2r2>
T~Ty (1 — T2

(Treat the relativistic correction as representing, in effect, a small
fractional increase in the value of G, and use the value of v corre-
sponding to the Newtonian orbit.)

(b) Hence show that, in each revolution, a planet in a circular
orbit would travel through an angle greater by about 24w3r2/c2T¢?
than under the pure Newtonian force, and that this is also expressible
as 67rGM/c’2r, where M is the mass of the sun.

(c) Apply these results to the planet Mercury and verify that
the accumulated advance in angle amounts to about 43 seconds of
arc per century. This corresponds to what is called the precession
of its orbit.




