When first studying mechanics one has the impression that

everything in this branch of science is simple, fundamental
and settled for all time. One would hardly suspect the
existence of an important clue which no one noticed for

three hundred years. The neglected clue is connected with

one of the fundamental concepts of mechanics—that of mass.

A. EINSTEIN AND L. INFELD,
The Evolution of Physics (1938)

IMAGINE THAT YOU are sitting in a car on a very smooth road.
You are holding a heavy package. The car is moving, but you
cannot see the speedometer from where you sit. All at once you
get the feeling that the package, instead of being just a dead
weight on your knees, has begun to push backward horizontally
on you as well. Even though the package is not in contact with
anything except yourself, the effect is as if a force were being
applied to it and transmitted to you as you hold it still with
respect to yourself and the car. If you did not restrain the package
in this way, it would in fact be pushed backward. You notice
that this is what happens to a mascot that has been hanging at
the end of a previously vertical string attached to the roof of
the car.

How do you interpret these observations? If you have any
previous experience of such phenomena, you will have no hesita-
tion in saying that they are associated with an increase of velocity
of the car—i.e., with a positive acceleration. Even if this were
your first experience of this type, but if you had a well-developed
acquaintance with Newton’s laws, you could reach the same
conclusion. An acceleration of the car calls for an acceleration
of everything connected with it; the acceleration of the package
requires, through F = ma, a force of the appropriate size supplied
by your hands. Nonetheless, it does feel just as if the package
itself is somehow subjected to an extra force—a “force of in-




MOTION OBSERVED FROM UNACCELERATED FRAMES

ertia”—that comes into play whenever the effort is made to
change the state of motion of an object.

These extra forces form an important class. They can be
held responsible for such phenomena as the motion of a Foucault
pendulum, the effects in a high-speed centrifuge, the so-called
g forces on an astronaut during launching, and the preferred
direction of rotation of cyclones in the northern and southern
hemispheres. These forces are unique, however, in the sense
that one cannot trace their origins to some other physical system,
as was possible for all the forces previously considered. Gravita-
tional, electromagnetic, and contact forces, for example, have
their origins in other masses, other charges, or the “contact’ of
another object. But the additional forces that make their ap-
pearance when an object is being accelerated have no such
physical objects as sources. Are these inertial forces real or not?
That question, and the answer to it, is bound up with the choice
of rteference frame with respect to which we are analyzing the
motion. Let us, therefore, begin this analysis with a reminder
of dynamics from the standpoint of an unaccelerated frame.

An unaccelerated reference frame belongs to the class of reference
frames that we have called inertial. We saw, in developing the
basic ideas of dynamics in Chapter 6, that a unique importance
and interest attaches to these frames, in which Galileo’s law of
inertia holds. We have seen how, if one such frame has been
identified, any other frame having an arbitrary constant velocity
relative to the first is also inertial, and our inferences about the
forces acting on an object are the same in both.

To a good first approximation, as we know, the surface of
the earth defines an inertial frame. So also, therefore, does any
system moving at constant speed over the earth. Galileo himself
was the first person to present a clear recognition of this fact,
and one aspect of it that he discussed is useful as a starting point
for us now. In his Dialogue Concerning the Two World Systems,
in which he advocated the Copernican view of the solar systemt
in preference to the Ptolemaic, Galileo pointed out that a rock,
dropped from the top of the mast of a ship, always lands just at
the foot of the mast, whether or not the ship is moving. Galileo
argued from this that the vertical path of a falling object does
not compel one to the conclusion that the: earth is stationary:

Fig. 12-1 (a) Para-
bolic trajectory under
gravity, as observed

in the earth’s reference |

frame. The initial
velocity vo is hori-
zontal. (b) Same
motion observed from
a frame with a hori-

zontal velocity greater

than ve. (c) Same
motion observed from
a frame having both

horizontal and vertical

velocity components.

The comparison here is between an object falling from rest relative
to the earth and another object falling from rest relative to the
ship. If we considered only an object that starts from rest rela-
tive to a moving ship, its path would be vertical in the ship’s
frame and parabolic in the earth’s frame. More generally, if we
considered an object projected with some arbitrary velocity
relative to the earth, its subsequent path would have diverse
shapes as viewed from different inertial frames (see Fig. 12-1)
but all of them would be parabolic, and all of them, when ana-
lyzed, would show that the falling object had the vertical ac-
celeration, g, resulting from the one force F, (= mg) due to
gravity. Let us now contrast this with what one finds if the
reference frame itself has an acceleration.

MOTION OBSERVED FROM AN ACCELERATED FRAME

Suppose that an object is released from rest in a reference frame
that has a constant horizontal acceleration with respect to the
earth’s surface. Let us consider the subsequent motion as it
appears with respect to the earth and with respect to the ac-
celerating frame. We shall take the direction of the positive x
axis in the direction of the acceleration and will set up two
rectangular coordinate systems: system S, at rest relative to the
carth, and ', fixed in the accelerating frame (Fig. 12-2). Take
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Fig. 12-2  Relationship of co-
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Fig. 12-3 (a) Para-
bolic trajectory of a
particle under gravity
as observed in the
earth’s reference
frame S.. (b) Same
motion observed in a
frame S’ that has a
constant horizontal
acceleration.

the origins of the frames to coincide at # = 0, and suppose that
the velocity of S’ with respect to S at this instant is equal to vy,
The vertical axes of the two systems are taken as positive upward,
and the object is released at + = 0 from a point for which x =
x'=0;,p =y =h

What: will the trajectories in S and S’ look like? For an
observer in S, we already know the answer. To him, the object
is undergoing free fall with initial horizontal velocity v, [Fig.
12-3(a)].- Thus we have

= vol

x
(As observed in S) {y h— Lgr?

It

These two equations uniquely define the position of the object

at time ¢, but to describe the motion as observed in S’ we miust

express the results in terms of the coordinates x’ and y’ as niea-

sured in S’. To transform to the S’ frame, we substitute
X=X — X

=Y

where x, is the separation along the x axis of the origins of §

and S’ (see Fig. 12-2). We know that ‘
X, = vot + Sar®

Substituting these values we find

] x = vot — ot + %ar?) = —%ar®
(As observed in Sy | , Lo
y' =h— zgt

Thus the path of the particle as observed in S’ is a straight line

given by the equation

’

P
g

This is shown in Fig. 12-3(b). In the accelerated frame, the
object appears to have not only a constant downward component
of acceleration due to gravity, but also a constant horizontal
component of acceleration in the —x direction which causes the
particle to follow a nonvertical straight-line path. [A similar
simple example is the monkey-shooting drama described in
Chapter 3 (p. 104). The outcome becomes almost self-evident if
we choose to describe the events in the rest frame of the falling
monkey. In this frame the bullet just follows a straight-line path
directly toward the monkey, while the ground accelerates up-
ward at 9.8 m/sec?.]

There is no mystery about the unfamiliar motion repre-
sented by Fig. 12-3(b). It is a direct kinematic consequence
of describing the normal free-fall motion from a frame that is
itself accelerated. We could perfectly well use this path, de-
scribed by measurements made entirely within S’, to discover
the acceleration of this frame, provided that the direction of the
true vertical were already known. However, a greater interest
attaches to learning about the acceleration through dynamic
methods. That is the concern of the next section.

ACCELERATED FRAMES AND INERTIAL FORCES

From what has been said, it is clear that inertial frames have a
very special status. All inertial frames are equivalent in the sense
that it is impossible by means of dynamical experiments to dis-
cover their motions in any absolute sense—only their relative
motions are significant. Out of this dynamical equivalence
comes what is called the Newtonian principle of relativity:

There is no dynamical observation that leads us to prefer one
inertial frame to another. Hence, no dynamical experiment will
tell us whether we have a constant velocity through space.

As we have just seen, however, a relative acceleration between
two frames is dynamically detectable. As observed in accelerating
frames, objects have unexpected accelerations. It follows at once,
since Newton’s law establishes a link between force and ac-
celeration, that we have a quantitative basis for calculating the
magnitude of the inertial force associated with a measured
acceleration. Conversely, and more importantly, we have a
dynamical basis for inferring the magnitude of an acceleration
from the inertial force associated with it. This is the underlying




principle of all the instruments known as accelerometers. They
function because of the inertial property of some physical mass,

To make the analysis explicit, consider the motion of g
particle P with respect to two reference frames like those con-
sidered in the last section and shown in Fig. 12-2: an inertial
frame S and an accelerated frame S’. We then have, once again;

x4 xs

.':y’

The velocity components of P as measured in the two frames are
thus given by

Uy = Uy + U,

!
Uy = Uy

where vs = dx,/dt at any particular instant. If S” has a constant
acceleration a, we can put v, = vg + at, but the condition of
constant acceleration is not at all necessary to our analysis.

Taking the time derivatives of the instantaneous velocity

components, we then get

a = dy + as
ay = ay
where a, is the instantaneous acceleration of the frame S’
Although we have chosen to introduce the calculation in-terms
of Cartesian components, it is clear that a single vector statement
relates the acceleration a of P, as measured in S, to its accelera-
tion a’ as measured in S’ together with the acceleration a, of S/
itself:

a=a +a (12-1

Multiplying Eq. (12-1) throughout by m, we recognize the left-
hand side as giving the real (net) force, F, that is acting on the
particle, since this defines the true cause of its acceleration as
measured in an inertial frame. That is, in the S frame,

F = ma (12'2)

but, using Eq. (12-1), this gives us

F = ma' -+ ma; (12-3

We now come to the crucial question: How do we i-nte':rpfl:t
Eq. (12-3) from the standpoint of observations made within the

accelerated frame S’ itself?

Newton’s viewpoint— that the net force on an object is the
cause of accelerated motion (¥, = ma)—is so deeply ingrained
in our thinking that we are strongly motivated to preserve this
relationship at all times. When we observe an object accelerating,
we interpret this as due to the action of a net force on the object.
Can we achieve a mathematical format that has the appearance
of ¥y, = ma for the present case of an accelerated frame of
reference? Yes. By transferring all terms but ma’ to the left
and treating these terms as forces that act on m, and have a
resultant F’, which is of the correct magnitude to produce just
the observed acceleration a’:

F/ =F — ma, = ma’ (12-4)

The net force in the S’ frame is thus made up of two parts: a
“real” force, F, with components F, and F,, and a “fictitious”
force equal to —ma,, which has its origin in the fact that the
frame of reference itself has the acceleration -+a;. An important
special case of Eq. (12-4) is that in which the “real” force F is
zero, in which case the particle, as observed in S’, moves under
the action of the inertial force —ma, alone.

The result expressed by Eq. (12-4) is not merely a mathe-
matical trick. From the standpoint of an observer in the ac-
celerating frame, the inertial force is actually present. If one
took steps to keep an object “at rest” in S’, by tying it down
with springs, these springs would be observed to elongate or
contract in such a way as to provide a counteracting force to
balance the inertial force. To describe such a force as “fictitious”
is therefore somewhat misleading. One would like to have some
convenient label that distinguishes inertial forces from forces
that arise from true physical interactions, and the term “pseudo-
force” is often used. Even this, however, does not do justice to
such forces as experienced by someone who is actually in the
accelerating frame. Probably the original, strictly technical
name, ‘“‘inertial force,” which is free of any questionable over-
tones, remains the best description.

As an illustration of the way in which the same dynamical
situation may be described from the different standpoints of an
inertial frame, on the one hand, and an accelerated frame, on
the other, consider a simple pendulum suspended from the foof
of a car. The mass of the bob is m. In applying F = ma from the
standpoint of a frame of reference S attached to the earth




Tisin § — ma =0
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Fig.. 12-4 . Forces
acting on a suspended
mass in (a) a station-
ary-car, (b) a car
moving at constant
velocity, and (¢) a car
undergoing a positive
acceleration,

Thus the equilibrium inclination of the pendulum is defined by
the condition

tan 0 = (12-5)

nle

ACCELEROMETERS

The result expressed by Eq. (12-5) provides the theoretical basis
for a simple accelerometer. If we have first established the true
vertical - direction, representing. 6 = 0, the observation of the
angle of inclination of a pendulum at any subsequent time tells
us the value of a through the equation

(assumed nonrotating), one can draw isolation diagrams for the
possible motions of the car as shown in Fig. 12-4. In each case,
there are just two (real) forces acting on the bob: F,, the force
of gravity, and T, the tension in the string. Cases (a) and (b) do
1ot involve acceleration and the application of F = ma is trivial.
In (c), the bob undergoes acceleration toward the right and the
string hangs at an angle with some increase in its tension (from
T to T;). The isolation diagram of Fig. 12-5(a) leads us to apply
F = ma as follows:

a=gtan@

For example, if a passenger in an airplane lets his tie, or a key-
Fig. 12-6 (a) Tie chain, hang freely from' his fingers during the takeoff run; he
hanging in equilib- can make a rough estimate of the acceleration, which is usually
rium within an almost constant [Fig. 12-6(a)].  If he also records the time from
the beginning of the run to the instant of takeoff, he can obtain
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ma accelerated vehicle.
(b): Quantitative ac-
celerometer based on
measuring the equilib-
rium angle of a simple
plumbline.. (¢) Car-
penter’s level (in this
case a pivofed marker
immersed in liquid of
greater density) can
be used as an acceler-
ometer, (d) A bubble
trapped in a ciirved
tube of liquid gives
direct readings of
acceleration, This
Jorm of accelerometer
was devised by W. U.
Waltor: (Edication
Research Center,
M.LT.). Figure 12-7
shows an example of
1§ ise,

Horizontal component: Tisin @
Vertical component: 7Ticosf — mg = 0

In the S’ frame, however, because of the acceleration ‘of the
frame, there will be an additional force of magnitude ma in the
direction opposite to the acceleration of the frame. fj’igure
12-5(b) shows an isolation diagram for the bob as seen m.S’ -
The bob is in equilibrium. Here, application of F! = mal gives
(because a’ = 0):

Fig. 12-5- Forces on
an object that is at
rest relative to an
accelerated car (a) as
Judged in aninertial
frame, and (b) as
Judged in the acceler-
ated frame.




a fairly good estimate of the length of the run and the takeoff
speed. If he is more ambitious, he can go armed with a card, as
in Fig. 12-6(b), already marked out as a goniometer (= angle
measurer) or even directly calibrated in terms of acceleration
measured in convenient units (e.g., mph per second). Another
simple accelerometer is obtainable readymade in the form of a
carpenter’s level made of a small pivoted float that is completely
immersed in a liquid [Fig. 12-6(c)]. All these devices make use
of the fact that the natural direction of a plumbline in an ac-
celerated frame is defined by the combination of the gravitational
acceleration vector g and the negative of the acceleration a of
the frame itself.

A quite sensitive accelerometer of this same basic type, with
the further advantages of a quick response and a quick attain-
ment of equilibrium (without much overshoot or oscillation)
can be made by curving a piece of plastic tubing into a circular
arc and filling it with water or acetone until only a small bubble
remains [see Fig. 12-6(a)]. Figure 12-7(a) shows the record of
acceleration versus time as obtained with such an accelerometer
during the takeoff of a jet aircraft. Figures 12-7(b) and (c) show
the results of numerically integrating this record so as to obtain
the speed and the total distance traveled.

Accelerometers of a vastly more sophisticated kind can be
made by using very sensitive strain gauges, with electrical mea-
suring techniques, to record in minute detail the deformations
of elastic systems to which a mass is attached. Figure 12-8
shows in schematic form the design of such an instrument. If
the object on which the accelerometer is mounted undergoes an
acceleration, the inertial force experienced by the pendulum bob
begins to deflect it. This, however, unbalances slightly an elec-
trical capacitance bridge in which the pendulum forms part of
two of the capacitors, as shown. An error signal is obtained
which is used both to provide a measure of the acceleration and
to drive a coil that applies a restoring force to the pendulum.
Such an accelerometer unit may have a useful range from about
10~% “g” to more than 10 g.

1A book entitled Science for the Airplane Passenger by Elizabeth A, Wood
(Ballantine, New York, 1969) has such a gonjometer on its back cover and a
discussion of its use in the text. The book also describes a host of other ways

Fig. 12-7" (a) Récord obtained with the accelerometer of Fig.12-6(d) }I::;ZZ‘ eo iﬁ Which a;rplane asacmacre oo s o O o onet ways
/ jal jet ail The accelerometer: was their travels,
and after takeoff of a commercial jet aircraft. .
ote the sharl

as to record the horizontal component of acceleration only. ]L\" e re
o, L a4 w me - ” v e IR YRR




. a
{ Accelerating object g —

Control
coil
141 Magnet

Control signal

Integrating
circuit

s

Pendulum Amplifier
bob

Signal
generator

Z

Bridge
Fig. 12-8 . Electro- Cs Cy unbalance

mechanical acceler- I | signal
ometer systent. [ i

ACCELERATING FRAMES AND GRAVITY

In all our discussions of accelerated frames, we have assumed
that the observers know “which way is up”’—i.e., they know the
direction and magnitude of the force of gravity and treat it
(as we have done) as a real force, whose source is the gravitating
mass of the earth. But suppose our frame of reference to be a
conipletely. enclosed room with no access to the external sgr-
roundings. What can one then deduce about gravity and inertial
forces through dynamical experiments wholly within the roc?m?

We shall suppose once again that there is an observer 11 @
frame, S, attached to the earth. This observer is not isolat'ed;
he is able to verify that the downward acceleration of a partlcl’e
dropped from rest is along a line perpendicular to the earth’s
surface and hence is directed toward the center of the earth.’ He
is able to draw the orthodox conclusion that this acceleration 18
due to the gravitational attraction from the large mass of the
earth. Our second observer is shut up in a room that defines t}%e
frame S’. Initially it is known that the floor of ‘his room 18

1\We are still ignoring the rotation of the earth, which causes this statem;ant gz
be not quite correct.- A falling object does not fall exactl){ parallel to'a plum .
line. We shall come back to this when we discuss: rotating reference frames:

horizontal and that its walls are vertical. - In subsequent mea-
surements, however, the observer in S’ finds that a plumbline
hangs at an angle to what he had previously taken to be the
vertical, and that objects dropped from rest travel parallel to
his plumbline. The observers in S and S report their findings to
one another by radio. The observer in S’ then concludes that
he has three alternative ways of accounting for the component
of force, parallel to the floor, that is now exerted on all particles
as observed in his frame:

1. In addition to the gravitational force, there is an inertial
force in the —x direction due to the acceleration of his frame in
the +x direction.

2. His frame is not accelerating, but a large massive object
has been set down in the —x direction outside his closed room,
thus exerting an additional gravitational force on all masses in
his frame.

3. His room has been tilted through an angle 6 and an extra
mass has been placed beneath the room to increase the net
gravitational force. (This is close to being just a variant of
alternative 2.)

In supposing that all three hypotheses work equally well to
explain what happens in S’, we must assume that the additional
massive object, postulated in alternatives 2 and 3, produces an
effectively uniform gravitational field throughout the room.

From dynamical experiments made entirely within the closed
room, there is no way to distinguish among these hypotheses.
The acceleration of the frame of reference produces effects that
are identical to those of gravitational aftraction. Inertial and
gravitational forces are both proportional to the mass of the
object under examination. The procedures for detecting and
measuring them are identical. Moreover, they are both de-
scribable in terms of the properties of a field (an acceleration
field) that has a certain strength and direction at any given point.
An object placed in this field experiences a certain force without
benefit of any contact with its surroundings. Is all this just an
interesting parallel, or does it have a deeper significance?

Finstein, after pondering these questions, concluded that
there was indeed something fundamental here. In particular, the
completely exact proportionality (as far as could be determined)
between gravitational force and inertial mass suggested to him
that no physical distinction could be drawn, at least within a




Fig. 12-9 (a) Apple falling inside a box that rests on
the earth. (b) Indistinguishable motion when the apple
is inside an accelerated box in oufer space.

limited region, between a gravitational field and a general ac-
celeration of the reference frame (see Fig. 12-9). He announced
this—his famous principle of equivalence—in 1911.1 The propor-
tionality of gravitational force to inertial mass now becomes an
exact necessity, not an empirical and inevitably approximate
result. It is also implied that anything traversing a gravitational
field must follow a curved path, because such a curvature would
appear on purely kinematic and geometrical grounds if we re-
placed the gravitational field by the equivalent acceleration of our
own reference frame. In particular, this should happen with
rays of light (see Fig. 12-10). With the help of these ideas Finstein
proceeded to construct his general theory of relativity, which
(as we pointed out in Chapter 8) is primarily a geometrical theory
of gravitation.

Fig. 12-10  Successive stages in the path of a hori-
zontally traveling object as observed within an enclosure
accelerating vertically upward. This illustrates the
equivalence of gravity and a general acceleration of the
reference frame.

1A Finstein, Ann. Phys. (4) 35, 898 (1911), reprinted il translated. form in
The Principle of Relativity (W- Perrett and G. B. Jeffery, translators), Methuen,
L.ondon, 1923 and Dover, New York, 1958,

CENTRIFUGAL FORCE

We shall now consider a particular kind of inertial force that
always appears if the motion of a particle is described and
analyzed from the standpoint of a rotating reference frame. This
force—the centrifugal force—is familiar to us as the force with
which, for example, an object appears to pull on us if we whirl
it around at the end of a string.' To introduce it, we shall consider
a situation of just this kind.

Suppose that a “tether ball” is being whirled around in
horizontal circular motion with constant speed (Fig. 12-11).
We shall analyze the motion of the ball as seen from two view-
points: a stationary frame S, and a rotating frame S’ that rotates
with the same (constant) rotational speed as the ball. For con-
venience, we align the coordinate systems with their z and 2z’ axes
(as well as origins) coincident. The rotational speed of S’ relative
to S will be designated w (in rad/sec). Figure 12-11 shows the
analysis with respect to these two frames. The essential con-
clusions are these:

1. From the standpoint of the stationary (inertial) frame,
the ball has an acceleration (—w?r) toward the axis of rotation.
The force, F,, to cause this acceleration is supplied by the tether-
ing cord, and we must have

(In S) F. = —mwr

2. From the standpoint of a frame that rotates so as to keep
exact pace with the ball, the acceleration of the ball is zero. We
can maintain the validity of Newton’s law in the rotating frame
if, in addition to the force F,, the ball experiences an inertial
force F;, equal and opposite to F;, and so directed radially
outward:

Fl=F, +F =0

(In S
F; = mw?r

The force F; is then what we call the centrifugal force.

The magnitude of the centrifugal force can be established
experimentally by an observer in the rotating frame S’. Let him
hold a mass m stationary (as seen in his rotating frame) by

1The name “centrifugal” comes from the Latin: centrum, the center, and
fugere, to flee.
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Pictorial sketch of
problem

Ball is observed to move with
speed v in a circle of radius r
(angular speed o)
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the ball
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T cos 6
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Vertical Direction

We now analyze the Because there is no verticai ac-
probiem in terms of celeration; we conclude that
F=ma the net vertical force must be

zerd; hence

T cos @ ==mg

Horizontal Direction

The object is traveling in a circle,
therefore accelerating; the net
force (i.e., the sum of all three
forces) is horizontal toward the
center of the circle, and must
be equal in magnitude to mv?fr;
hence
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This force is directed radially
inward

with the ball.

Fig. 12-11 Motion of a suspended ball, which is traveling in a horizontal :
circle, as analyzed from the earth’s reference frame and from a frame rotaling

Boy turns around at the same
angular speed w as the ball;
from his point of view, the ball
is at rest

T = tension in cord
mg = force of gravity
F; = inertial force due to viewing
the problem from a rotating
frame

Vertical Direction

Because there is no vertical
acceleration, we conclude that
the net vertical force must be
zero; hence:

T cos 6=mg

Horizontal Direction

The object is “at rest,”” therefore
the sum of all the forces on:it
must be zero; hence F is equal
in magnitude to T sin 6. From
the analysis in the left columm; ‘
it is given by

mv?
Fi=—= ma?r

and is directed outward.

We call F, the centrifugal force

Spring balance fastened
to the axis of rotation,
which is: perpendicular
to the plane of the paper

Fig. 12-12 Measurement of the
Jorce needed to hold an object at
rest in a rotating reference frame.

Axis
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attaching it to a spring balance (Fig. 12-12). If the mass is at
any location except on the axis of rotation, the spring balance
will show that it is exerting on the mass an inward force propor-
tional to m and . If the observer in S’ is informed that his frame
is rotating at the rate of w rad/sec, he can confirm that this force
is equal to mw?r. The observer explains the extension of the spring
by saying that it is counteracting the outward centrifugal force
on m which is present in the rotating frame. Furthermore, if the
spring breaks, then the net force on the mass is just the centri-
fugal force and the object will at that instant have an outward
acceleration of w?r in response to this so-called “fictitious”
force. Once again the inertial force is “there” by every criterion
we can apply (except our inability to find another physical system
as its source). ,

The magnitude of the centrifugal force is given, as we have
seen, by the equation

2
Feontritugal = m P’T = mwir (radially outward) (12-6)

A nice example of our almost intuitive use of this force, under
conditions in which there is nothing to balance it, is provided
by situations such as the following: We have been washing a
piece of straight tubing, and we want to get it dry on the inside.
As a first step we get rid of the larger drops of water that are
sitting on the inside walls. And we do this, not by shaking the
tube longitudinally, but by whirling it in a circular arc [Fig.
12-13(a)]. The analysis of what happens as we begin this rotation
gives a particularly clear picture of the difference between the
descriptions of the process in stationary and rotating frames. It
also provides us with a different way of deriving the formula for
the centrifugal force itself.

Suppose that a drop, of mass m, is sitting on the inner wall
of the tube at a point 4 [Fig. 12-13(b)], a distance » from the
axis of rotation. Assume that the tube is very smooth, so that




Notice, then, that what is, in fact; a small transverse displace-

ment in a straight line, with no real force in the radial direction,
appears in the frame of the tube as-a small, purely radial dis-
placement under an unbalanced centrifugal force. The physical
fact that the drop is moved outward along the tube is readily
understood in terms of either description.: (We should add, how-
ever, that our analysis as it stands does only apply to the initial
step of the motion. Once the drop has acquired an appreciable
radial velocity, things become more complicated.)

The term ““centrifugal force” is frequently used incorrectly.
For example, one may read such statements as “The satellite
does not fall down as it moves around the earth because the
centrifugal force just counteracts the force of gravity and hence
there is no net force to make it fall.” Any such statement flouts
Newton’s first law—A body with no net force on it travels in a
straight line. . .. For if the satellite is described as moving in
a curved path around the earth, it must also have an unbalanced
force on it. The only frame in which the centrifugal force does
balance the gravitational force is the frame in which the satellite
appears not to move at all. One can, of course, consider the
description of such motions with respect to a reference frame
rotating at some arbitrary rate different from that of the orbiting
object itself. In this case, however, the centrifugal contribution
to the inertial forces represents only a part of the story, and the
simple balancing of “real” and centrifugal forces does not apply.
In particular, let us reemphasize that in a nonrotating frame of
reference there is no such thing as centrifugal force. The long-

Fig. 1213 (a) Shak-
ing'a drop of water out
of a tube. (b) Analysis
of initial motion in
terms of centrifugal
forces.

the drop encounters no resistance if it moves along the tube.
The drop must, however, be carried along in any transverse
movement of the tube resulting from the rotation. Then if the
tube is suddenly set into motion and rotated through a small
angle Af, the drop, receiving an impulse normal to the wall of
the tube at 4, moves along the straight line 4C. This, however,
means that it is now further from the axis of rotation than if it
had been fixed to the tube and had traveled along the circular
arc AB. We have, in fact,

BC = rsecAf — r

Now

secAf = (cos A~ = [1 — F(AH?]™!

~ 1+ 3(A0)* : . .
standing confusion that leads people to use the term “centrifugal
Therefore, force” incorrectly has driven at least one author to extreme
BC ~ Lr(A0)? vexation. In an otherwise sober and quite formal text the author
~ 3

writes: “There is no answer to these people. Some of them are
good citizens. They vote the ticket of the party that is responsible
for the prosperity of the country; they belong to the only true
church; they subscribe to the Red Cross drive—but they have
no place in the Temple of Science; they profane it.””!

-We can, however, express Af in terms of the angular velocity @
and the time Af: A6 = w Af.. Thus we have

BC = Lw?r(Af)?

This is then recognizable as the radial displacement that occurs
in time Az under an acceleration w?r. Hence we can put

CENTRIFUGES

The laboratory centrifuge represents an immensely important
and direct application of the dynamical principle of centrifugal
force. The basic arrangement of a simple type of centrifuge is

2

Aeentrifugal = W77

and so

'W. F. Osgood, Mechanics, Macmillan, New York, 1937.

Fccntrifugal = Mw-r




Fig.:12-14 (a) Ver-
tical section through
a simple centrifuge.
(b) Analysis of radial
sedimentation in
terms of centrifugal
forces.

shown in Fig. 12-14(a). Carefully balanced tubes of liquid ar'e
suspended on smooth pivots from a rotor. When the rotor is
made to spin at high speed, the tubes swing upward and outwarfi
into almost horizontal positions and may be maintained in this
orientation for many hours on end. At any point P in one of the
tubes [Fig. 12-14(b)], distance r from the axis of rotation, there
is an effective gravitational field of magnitude «”r, which may
be made very much greater than g. For example, if » = '15 cm
and the rotor spins at 25rps (w = 50x sec™ 1), the value <?f w.2r
is about 4000 m/sec? or 400 g. Small particles in suspension in
the liquid will be driven toward the outward (bottom) end of jche
tube much more quickly than they would ever be under the action
of gravity alone. '

The basis for calculating the drift speed is the formula for
the resistive force to motion through a fluid at low speeds, which
we first met in Chapter 5. For a spherical particle of radius 7
and speed v, this force is proportional to the product rv. If th.e
medium is water, the approximate magnitude of the force 18

given by
R(v) = 0.02rv

where R is in newtons, r in meters, and v in m/sec. A st.egdy
value of v is attained when this force just balances the drwm,g
force associated with the effective gravitational field strength, & -
In calculating this driving force it is important to allo\.v fO;
buoyancy effects—i.e., Archimedes’ principle. .If the dens@y. 0
the particle is p, and the density of the liquid is pz, the driving
force is given by
4

F = ?(pp — Pl)r?)g,

This can be more simply expressed if we introduce the true
mass m of the particle (= 4rp,73/3), in which case we can put

(1)
Pp

To take a specific example, suppose that we have an aqueous
suspension of bacterial particles of radius 1 u, each with a mass
of about 5 X 107'° kg and a density about 1.1 times that of
water. If wé take for g’ the value 400 g calculated earlier, we find

~2X10-12N

We thus obtain a drift speed given by

2 x 10712

—4
v X 10-2 % 10=6 ~ 107" m/sec

This represents a settling rate of several centimeters per hour,
which makes for effective separation in reasonable times, whereas
under the normal gravity force alone one would have only a
millimeter or two per day.

The above example represents what one may regard as a
more or less routine type of centrifugation, but in 1925 the
Swedish chemist T. Svedberg opened up a whole new field of
research when, by achieving centrifugal fields thousands of times
stronger than g, he succeeded in measuring the molecular weights
of proteins by studying their radial sedimentation. The type of
machine he developed for this purpose was appropriately named
the wltracentrifuge, and Svedberg succeeded in producing centri-
fugal fields as high as about 50,000 g. The physicist J. W. Beams
has taken the technique even further through his development
of magnetic suspensions, in vacuum, that dispense’ with me-
chanical bearings altogether. The rotor simply spins in empty
space, with carefully controlled magnetic fields to hold it at a
constant vertical level against the normal pull of gravity. By
such methods Beams has produced centrifugal fields equivalent
to about 10° g in a usable centrifuge and fields as high as 10° g
in tiny objects (e.g., spheres of 0.001-in. diameter). The limita-
tion is set by the bursting speed of the rotor; this defines a maxi-
mum value of w proportional to 1/r (see Chapter 7, p. 208).
Since the centrifugal field g’ is equal to w?r, and the limiting
speed sets an upper limit to wr, it may be seen that the attainable
value of g’ varies as 1 /7.

The technique of ultracentrifuge methods has been brought




CORIOLIS FORCES

to an extraordinary pitch of refinement. It has become possible
to determine molecular weights to a precision of better than 1%,
over a range from about 108 (virus particles) down to as low as
about 50. The possibility of measuring the very low molecular
weights by this method is particularly impressive. Beams has
pointed out that in a solution of sucrose in water, the calculated
rate of descent of an individual sucrose molecule, of mass about
340 amu and radius about 5 A, would (according to the kind of
analysis we gave earlier) be less than 1 mm in 100 years under
normal gravity. (A rate as slow as this becomes in fact mean-
ingless because, as Beams points out, it would be completely
swamped by random thermal motions.) If a field of 10° g is
available, however, the time constant of the sedimentation
process is reduced to the order of 1 day or less, which brings the
measurement well within the range of possibility. !

This whole subject of centrifuges and centrifugation is a
particularly good application of the concept of inertial force,
because the phenomena are so appropriately described in terms
of static or quasistatic equilibrium in the rotating frame.

We have seen how the centrifugal force, mw?r, exerted on a
particle of a given mass m in a frame rotating at a given angular
velocity w, depends only on the distance r of the particle from
the axis of rotation. In general, however, another inertial force
appears in a rotating frame. This is the Coriolis force,? and it
depends only on the velocity of the particle (not on its position).
We shall introduce this force in a simple way for some specific
situations. Later, by introducing vector expressions for rotational
motion, we shall develop a succinct notation that gives both the
centrifugal and Coriolis forces in a form valid in three dimensions
using any type of coordinate system.

The need to introduce the Coriolis force is easily shown by
comparing the straight-line motion of a particle in an inerffial
frame S with the motion of the same particle as seen in a rotating
frame S’.

1For further reading on this extremely interesting subject, see.T. Svedbeig
and K. O. Pedersen, The Ultracentrifuge, Oxford University Press; New Yor 2:
1960, and J. W. Beams, “High Centrifugal Fields,” Physics T cacher 1, 10 ‘
(1963).

2¢3, Coriolis, J. de IEcole Polytechnique, Cahier 24, 142 (1835).

Suppose that S’ is a coordinate system attached to a hori-
zontal circular table that rotates with constant angular speed w.
Let the vertical axis of rotation define the 2z’ axis and suppose
that the table surface (in the x’y’ plane) has no friction. A string
fastened to the origin holds a particle on the )’ coordinate axis
at a radial distance r{ from the axis of rotation. Thus, in the S’
frame, the particle is at rest in equilibrium under the combined
forces of the tension in the string and the centrifugal force. (The
vertical force of gravity and the normal force of the table surface
always add to zero and need not concern us further.)

The same particle is viewed from an inertial frame S which
coincides with S’ at ¢ = 0. In this stationary frame, the particle
travels with uniform speed vy = wrg 1n:a circle of constant
radius 7o (= r{) under the single unbalanced force of the tension
in the string. There is, of course, no centrifugal force in this
inertial frame.

At ¢t = 0O the string breaks. In S the particle then travels

Fig. 12-15 Two different descriptions of the motion of
an object that is initially tethered on a rotating disk and
begins motion under no forces at t = 0.




in a straight line with constant speed v = wrq as shown in Fig,
12-15(a). To find the motion in ', we compare in the stationary
frame the positions of the y’ axis and the corresponding locations
of the particle at successive equally-spaced times. We discover
that the particle, as observed in S’, not only moves radially
outward, but also moves farther and farther to the right of the
single radial line formed by the rotating y’ axis. This result is
plotted in Fig. 12-15(b). To explain this motion as observed
in the rotating frame, it is necessary to postulate, in addition to
the centrifugal force, a sideways deflecting force. This deflecting
force is the Coriolis force.  In the course of the following dis-
cussion, we shall determine its magnitude and show that it
always acts at right angles to any velocity v’ in the S " frame.
We can find the magnitude of the Coriolis force by in-
vestigating another simple motion in these two frames. Suppose
that, instead of the situation just described, we make a particle
follow a radially outward path in the rotating frame at constant
velocity v, In this frame there must be no net force on the
particle. Hence we shall have to supply some real (inward) force
to counteract the varying (outward) centrifugal force as the
particle moves. We shall not concern ourselves with these radial
components but will concentrate our attention only on the
transverse-force components. In this way we can remove from
consideration the distortion of the trajectory by the centrifugal
force, which is purely radial.
How does the motion appear in the two frames? Figure
12-16(b) shows the straight-line path of the object in the rotating
frame. ~But the path of the object in the stationary frame is a
curved line 4B as shown in Fig. 12-16(a). In S the transverse
velocity vy (= wr) is greater at B than at 4, because the radial
distance from the axis is greater at B. Hence there must be a
real transverse force to produce this increase of velocity seen in
the stationary frame. This real force might be provided, for
example, by a spring balance.
What does this motion look like in the rotating frame? In
S’ the object moves outward with constant speed and hence has
no acceleration [see Fig. 12-16(b)]. This means, as we have
said, that there can be no net force on the object in the rotating
frame. But since an observer in S’ sees the spring balance exert-
ing a real sideways force on the object in the -6 direction, he
infers that there is a counteracting inertial force in the —0 direc-
tion to balance it. - This is the Coriolis force:

Fig. 12-16 (a) Lab-
oratory view of the
path of a particle that
moves radially out-
ward on a rotating
table. (b) The motion
as it appears in the
rotating frame itself.

To determine its magnitude, let 04 and OB in Fig. 12-17
be successive positions of the same radial line at times separated
by At. Let OC be the bisector of the angle A6. The velocity
perpendicular to OC changes by the amount Av, during Az, where

Avg = [w(r + Ar) cos(A8/2) + v, sin(Af/2)]
— [wr cos(A8/2) — v, sin(A8/2)]

For small angles we can put the cosine equal to 1 and the sine
equal to the angle, which leads to the following very simple
expression for Avg:

Avg = wAr + v, Af

The transverse acceleration ap is thus given by
ag = w(Ar/Ar) + v(AG/AD)

But

Ar/At = v, and AI/AT = w

Hence
UT

ag = 2w,
Fy

It

wlr + o) 2meov,

Fig. 12-17  Basis of calculating the Coriolis force for
a particle moving radially at constant speed with re-
(0] spect to «a rotating table.



This gives us the real force needed to cause the real acceleration
as judged in S. But as observed in the rotating frame S’, there
is no acceleration and no net force. Hence the existence of the
Coriolis force, equal to —2mwv}, is inferred. (Note that v, = v].)
This inertial force is in the negative ¢’ direction, opposite to the
spring force, and is at right angles to the direction of motion
of the particle:

Fl(Coriolis) =~ 2mav}

(12-7)

An important feature, which you should verify for yourself,
is that if we had considered a radially inward motion (v} negative),
then we would have inferred the existence of a Coriolis force
acting in the positive ¢’ direction. In both cases, therefore, the
Coriolis force acts togdeflect the object in the same way with
respect to the direction of the velocity v/ itself—to the right if
the frame S’ is rotating counterclockwise, as we have assumed,
or to the left if S’ rotates clockwise. It turns out, in fact, as we
shall prove later, that even in the case of motion in an arbitrary
direction the Coriolis force is always a deflecting force, exerted.
at right angles to the direction of motion as observed in the
rotating frame.

The Coriolis force is very real from the viewpoint of the
rotating frame of reference. If you want to convince yourself of
the reality of this “fictitious” force, ride a rotating merry-go-
round and try walking a radial line outward or inward. (Proceed
cautiously—the Coriolis force is so unexpected and surprising
that it is easy to lose one’s balance!)

DYNAMICS ON A MERRY-GO-ROUND

As we have just mentioned, the behavior of objects in motion
within a rotating reference frame can run strongly counter to
one’s intuitions. It is not too hard to get used to the existence
of the centrifugal force acting on an object at rest with respect
to the rotating frame, but the combination of centrifugal and
Coriolis effects that appear when the object is set in motion can
be quite bewildering, and sometimes entertaining. Suppose, for
example, that a man stands at point 4 on a merry-go—round
[Fig. 12-18(a)] and tries to throw a ball to someone at B (or
perhaps aims for the bull’s-eye of a dart board placed there).
Then the thrown object mysteriously veers to the right and
misses its target every time. One can blame part of this, of course,
on the centrifugal force itself. However, it is to be noted that

Fig. 12-18 (a) Tra-
Jectories of objects as
they appear to ob-
servers on a rotating
table. (b) An object

projected on a friction--

less rotating table can
return to its starting
point.

since the magnitude of the centrifugal force is mew?r and that of
the Coriolis force is 2mwv’, the ratio of these two forces is pro-
portional to v/ /wr. Thus if v’ is made much greater than the actual
peripheral speed of the merry-go-round, the peculiarities of the
motion are governed almost entirely by the Coriolis effects. If
this condition holds, the net deflection of a moving object will
always be to the right with respect to v/ on a merry-go-round

rotating counterclockwise. Thus if the positions 4 and B in
Fig. 12-18(a) are occupied by two people trying to throw a ball
back and forth, each will have to aim to the left in order to make
a good throw.

An extreme case of this kind of behavior can cause an
object to follow a continuously curved path that brings it back
to its starting point, although it is not subjected to any real
forces at all. This phenomenon has been demonstrated in the
highly entertaining and instructive film, Frames of Reference.'
A dry-ice puck, launched at point 4 on a tabletop of plate glass
[Fig. 12-18(b)], can be caused by a skilled operator to follow a
trajectory of the kind indicated.

GENERAL EQUATION OF MOTION IN A ROTATING FRAME?®

The goal of this discussion will be to relate the time derivatives
of the displacement of a moving object as observed in a sta-

1 Erames of Reference,” by J. N. P. Hume and D. G. Ivey, Education Develop-
ment Center, Newton, Mass., 1960.

2This section may be omitted by a reader who is willing to take on trust its
final results—that the total inertial force in a rotating frame is the combination
of the centrifugal force with a Coriolis force corresponding to a generalized
form of Eq. (12-7).




Fig. 12-19.  Use of
angular velocity as a
vector to define the
linear velocity of a
particle ot a rofating
table:v. = w XT.

tionary frame S and in a rotating frame S’. To set the stage; we
shall introduce the idea that angular velocity may be represented
as a vector.

Consider first a point P on a rotating disk [Fig. 12-19(a)].
It has a purely tangential velocity, vs, in a direction at tight
angles to the radius OP. We can describe this velocity, in both
magnitude and direction, if we define a vector according to the
same convention that we introduced for torque in Chapter 4.
That is, if the fingers of the right hand are curled around in the
sense of rotation, keeping the thumb extended as shown in
the figure, then w is represented as a vector, of length propor-
tional to the angular speed, in the direction in which the thumb
points. Thus with w pointing along the positive z direction, one
is defining a rotation that carries each point such as P from the
positive x direction toward the positive y direction. The rotation
of the disk is in this case counterclockwise as seen from above.

The velocity of P is now given by the vector (cross) product
of w with the radius vector r: '

v=owXTr (12-9)

This vector-product expression is valid in three dimensions also,
if the position vector r of P is measured from any point on the
axis of rotation, as shown in Fig. 12-19(b). The radius of the
circle in which P moves is R = rsin §. Thus we have v = s =
wrsin 6, in a direction perpendicular to the plane defined by @
and r. That is precisely what Eq. (12-8) gives us.

Next, we consider how the change of any vector during 2

Fig. 12-20 (a) Change
of a vector, analyzed
in terms of its change
as measured on a
rotating table, to-
gether with the change
due to rotation of the
table itself. (b) Sim-
ilar analysis for an
arbitrary vector
referred to any origin
on the axis of rotation.

small time interval Af can be expressed as the vector sum of two
contributions:

1. The change that would occur if it were simply a vector
of constant length embedded in the rotating frame S”.

2. The further change described by its change of length and
direction as observed in §”.

In Fig. 12-20(a) we show this analysis for motion confined
to a plane. The vector A at time ¢ is represented by the line CD.
If it remains fixed with respect to a rotating table, its direction
at time ¢ + At is given by the line CE, where A9 = w At. Thus
its change due to the rotation alone would be represented by
DE, where DE = AA9 = AwAtr. From the standpoint of
frame S’ this change would not be observed. There might, how-
ever, be a change represented by the line EF; we shall denote
this as AAg—the change of A as observed in S”. The vector
sum of DE and EF, ie., the line DF, then represents the true
change of A as observed in S. We therefore denote this as AAg.

In Fig. 12-20(b) we show the corresponding analysis for
three dimensions. The length of DE is now equal to A sin 6 Agp;
its direction is perpendicular to the plane defined by w and A.
Since Ap = w Af, we can put

vector displacement DE = (w X A) At

The displacement AAg: may be in any direction with respect to
DE, but the two again combine to give a net displacement DF
which is to be identified with AAg. Thus we have




AAg = AA + (0 X A)Ar

We can at once proceed from this to a relation between the rates
of change of A as observed in .S and S’, respectively:

dA dA
Y o= 22 12~
<dt>s <dt>,sl +w X A (12-9)

This is a very powerful relation because A can be any vector
we please.

First, we shall choose A to be the position vector r. - Then
(dA/dt)s is the true velocity, v, as observed in S, and (dA/df)g: is
the apparent velocity, v/, as observed in §”. Thus we immediately
have

v=v-+wXr (12-10)

Next, we shall choose A to be the velocity v:

dav av
Y =12 12-11
<dt>s <dt>s/+w X v ( )

Now (dv/dt)g is the true acceleration, a, as observed in S.- The
quantity (dv/df)g: is, however, a sort of hybrid—it is the rate of
change in S’ of the velocity as observed in S. We can make more
sense of this if we substitute for v from Eq. (12-10); we then have

dv av' dr
(‘7;>S' B (75>s' ox <d1>s'

The two terms on the right of this equation are now quite recog-
nizable: (dv'/dt)g is the acceleration, a’, as observed in S’, and
(dr/dt)s is just v/. Thus we have

AN ,
<dt>S,—-a +w Xv

Substituting this in Eq. (12—-11) we thus get
a=a +tow XV +aoXy

We do not need to have both v and v/ on the right-hand s.ide,
and we shall again substitute for v from Eq. (12-10). This gives
us finally

a=2a +2w XV +wXwXr) (12-12)

A remark is in order regarding the last term, which involves

the cross product of three vectors. According to the rules of
vector algebra, the cross product inside the parentheses is to be
taken first, then the other cross product performed. A nonzero
answer will result for all cases where the angle formed by w and r
is other than 0° or 180°. Performing the cross products in the
reverse (incorrect) order, however, would result in zero for all
cases, regardless of the angle between these vectors.

Multiplying Eq. (12-12) throughout by the mass m of the
object, we recognize the left side as the net external force on
the mass as seen in the stationary system.

ma = Fpop = ma’ 4 2m(ew X V) + miw X (0 X )]

In the rotating frame of reference, the object m has the accelera-
tion a’.. We may preserve the format of Newton’s second law in
this accelerated: frame of reference by rearranging the above
equation, so as to be able to write

et = ma’ (12-13a)
where
Qet = Fnet - Zm(w X V/) - m[w X (W X l')] (12~l3b)
“real”’ Coriolis centrifugal
force force force

inertial
forces

The mathematical form of Eq. (12-13b) shows that both the
Coriolis force and the centrifugal force are in a direction at
right angles to the axis of rotation defined by w. The centrifugal
force, in particular, is always radially outward from the axis, as
is clear if one considers the geometrical relationships of the
vectors involved in the product —w X (w X r), as shown in
Fig. 12-21. The equation also shows that the Coriolis force

w X

—o X {w Xr)
Fig. 12-21 Relation of the vectors in-
volved in forming the centrifugal accelera-
tion —w X (w X 1).




“Real”: Fyey

Coriolis:
—2m(w X V')

Centrifugal:
—mfw X (@ X 1)

THE EARTH AS A ROTATING REFERENCE FRAME

In this section we shall consider a few examples of the way in
which the earth’s rotation affects the dynamical processes 0C

curring on it.

The local value of g

If a particle P is at rest at latitude X near the earth’s surface,
then as judged in the earth’s frame it is subjected to the gravita-

would reverse if the direction of w were reversed, but the direction
of the centrifugal force would remain unchanged.

The specification of F/ in Eq. (12-13) can be made entirely
on the basis of measurements of position, velocity, and accelera-
tion as observed within the rotating frame itself. The centrifugal
term, involving the vector r, might seem to contradict this, but
we could just as well put 1’ instead of r, because observers in
the two frames do agree on the vector position of a moving object
at a given instant, granted that they use the same choice of origin.

To summarize, we have established by the above calculation
that the dynamics of motion as observed in a uniformly rotating
frame of reference may be analyzed in terms of the following
three categories of forces:

This is the sum of all the “real” forces on
the object such as forces of contact, tensions
in strings, the force of gravity, electrical
forces, magnetic forces, and so on. Only
these forces are seen in a stationary frame of
reference.

The Coriolis force is a deflecting force always
at right angles to the velocity v’ of the mass
m. If the object has no velocity in the
rotating frame of reference, there-is: no
Coriolis force. It is an inertial force rot seen
in a stationary frame of reference.  Note

minus sign.

The centrifugal force depends on position
only and is always radially outward. It isan
inertial force not seen in a stationary frame
of reference. We could equally well write it

as —mlw X (@ X r)]. Note the minus sign.

Fig. 12=22 (a) Forces on an object at rest on the earth,
as interpreted in a reference frame that rotates with the
earth. (b) An object falling from rest relative to the
earth undergoes an eastward displacement. (¢) The fall-
ing motion of (b), as seen from a frame that does not
rotate with the earth.

tional force F, and the centrifugal force Fe,y shown in Fig.
12-22(a). The magnitude of the latter is given, according to

Eq. (12-13b), by the equation

Foent = mw?Rsin 6 = mw?R cosh

where R is the earth’s radius. We have already discussed in
Chapter 8 the way in which this centrifugal term reduces the
local magnitude of g and also modifies the local direction of the
vertical as defined by a plumbline. The analysis is in fact much
simpler and clearer from the standpoint of our natural reference
frame as defined by the earth itself. We have, as Fig. 12-22(a)

shows, the following relations:

Fl = F, — FeenycOSA = F; — mw’R cos® \

. 2 .
F} = Foene SINA = mw Rsin A cos A

Deviation of freely falling objects

(12-14)

If a particle is released from rest at a point such as P in Fig.
12-22(a), it begins to accelerate downward under the action of a
net force F/ whose components are given by Eq. (12-14). As




soon as it has any appreciable velocity, however, it also expe-
riences a Coriolis force given by the equation

Feoriolis = —2mw X V' (12-15)

Now the velocity v/ is in the plane PON containing the earth’s
axis. The Coriolis force must be perpendicular to this plane, and
a consideration of the actual directions of w and v’ shows that
it is eastward. Thus if we set up a local coordinate system defined
by the local plumbline vertical and the local easterly direction,
as in Fig. 12-22(b), the falling object deviates eastward from a
plumbline 4B and hits the ground at a point C. The effect is
very small but has been detected and measured in careful ex-
periments (see Problem 12-24). ;
To calculate what the deflection should be for an object
falling from a given height /, we use the fact that the value of v/
to be inserted in Eq. (12-15) is extremely well approximated by
the simple equation of free vertical fall:

v = gt

where v’ is measured as positive downward. Thus if we label the
eastward direction as x’, we have

&x'

moy = (2mew cos \)gt
Integrating this twice with respect to 7, we have
x' = Lgord cos A (12-16)

For a total distance of vertical fall equal to h, we have £ =
(2h/g)*' 2, which thus gives us

o = 2V2 wcos A 52 (12-17)
3 gl

Inserting approximate numerical values (@ = drday =7 X
1078 sec™h), one finds

¥ o~ 2 X 10-%32 cos\  (x' and hinm)

Thus, for example, with 2 = 50m at latitude 45°, one has
’ ~ 5 mm, or about 7 in.
It is perhaps worth reminding oneself that the effects of
inertial forces can always be calculated, if one wishes, from the

standpoint of an inertial frame in which these forces simply do
not exist. In the present case, one can begin by recognizing that
a particle held at a distance % above the ground has a higher
eastward velocity than a point on the ground below. For sim-
plicity, let us consider how this operates at the equator (A = 0).
Figure 12-22(c) shows the trajectory of the falling object as
seen in a nonrotating frame. The object has an initial horizontal
velocity given by

Voy = w(R —l— h)

After a time ¢ it has traveled a horizontal distance x given, very
nearly, by wRt. With the object now at P (see the figure) the
gravitational force acting on it has a very small component in
the negative x direction. We have, in fact,

x

Fp ~ — EF” ~ —mgwt
Hence

&Ex

dar2 g

Integrating once, we have

dx 1 2
= p — oWl
ar = voe T 28

Substituting the value vy, = w(R + h), this gives, as a very
good approximation,

dx :
== w(R + h) — 2gut”

Integrating a second time, we have
x = w(R + Mt — g3

However, the point O at the earth’s surface is also moving, with
a constant speed of wR. Thus, when the falling object hits the
ground at C, the point O has reached 0’, where 00’ = wRt.
Hence we have

x' = O'C =~ wht — %gwt3

If we substitute & = %gr?, we at once obtain the result given by




Fig. 12-23 Formation of a cyclone in ‘the /

northern hemisphere, under the action of
Coriolis forces on the moving air masses.

Eq. (12-16) for » = 0. [Or, of course, we can substitute 7 =
V/2h/g and arrive at Eq. (12-17)].

Patterns of atmospheric circulation

Because of the Coriolis effect, air masses being driven radially
inward toward a low-pressure region, or outward away from a
high-pressure region, are also subject to deflecting forces. ' This
causes most cyclones to be in a counterclockwise direction in the
northern hemisphere and clockwise in the southern hemisphere.
The origin of these preferred rotational directions may be seen
in Fig. 12-23, which shows the motions of air in the norther.n
hemisphere moving toward a region of low pressure. The h'on-
zontal components of the Coriolis force deflect these motions

toward the right. Thus, as the air masses converge on the center
of the low-pressure region, they produce a net counterclockwise
rotation. For air moving north or south over the earth’s surface
the Coriolis force is due east or due west, parallel to the earth’s
surface. ' If we consider a 1-kg mass of air at a wind velocity of
10 m/sec (about 22 mph) at 45° north latitude, a direct applica-
tion of Eq. (12-15) gives us

Feoriolis = 2mav’ sinh =~ (2)(1)(2r X 10-5)
X (10)(0.707) ~ 10-3 N

If we had considered air flowing in from east or west, the Coriolis
forces would not be parallel to the earth’s surface, but their
components parallel to the surface would be given by the same
equation as that used above. (Verify this.)

The approximate radius of curvature of the resultant motion
may be obtained from

&)

14
F=m2
MR

or

’ 100 s
Fourtona 1 X J5=5 = 10" m (about 60 miles)

R=m

As air masses move over hundreds of miles on the earth’s sur-
face, they often form huge vortices—as is dramatically shown
in the Tiros weather satellite photograph in Fig. 12-24.

Occasionally one reads that water draining out of a basin
also circulates in a preferred direction because of the Coriolis
force. In most cases, the Coriolis force on the flowing water is
negligible compared with other larger forces which are present;
however, if extremely precise and careful experiments are per-
formed, the effect can be demonstrated.

The Foucault pendulum

No account of Coriolis forces would be complete without some
mention of the famous pendulum experiment named after the
French physicist J. B. L. Foucault, who first demonstrated in
1851 how the slow rotation of the plane of vibration of a pen-

Fig. 12-24 Tiros satellite photo-
graph of a cyclone. (Courtesy of
Charles W, C. Rogers and N.A.S.A.)

ISee, for example, the film “Bathtub Vortex,” an excerpt from “Vorticity,”
by A. H. Shapiro, National Council on Fluid Mechanics, 1962.




Fig. 12-25 (a) A
pendulum swinging
along a north=south
line at latitude \.

(b) Path of pendulum
bob, as seen from
above.. (The change
of direction per swing
is, however, grossly
exaggerated.)

dulum could be used as evidence of the earth’s own rotation.

It is easy, but rather too glib, to say that of course we are
simply seeing the effect of the earth turning beneath the pendulum.
This description might properly be used for a pendulum sus-
pended at the north or south pole. One can even press things a
little further and say that at a given latitude, \ [see Fig. 12-25(a)]
the earth’s angular velocity vector has a component w sin A along
the local vertical. This would indeed lead to the correct result—
that the plane of the pendulum rotates at a rate corresponding
to one complete rotation in a time 7'(\) given by

TO) = —2F_ = 24cse hours (12-18)
wsin A
But the pendulum is, after all, connected to the earth via its
suspending wire, and both the tension in the wire and the gravita-
tional force on the bob lie in the vertical plane in which th'e
pendulum is first set swinging. (So, too, is the air resistance, if
this needs to be considered.) It is the Coriolis force that can be
invoked to give a more explicit basis for the rotation. For a
pendulum swinging in the northern hemisphere, the Coriolis
force acts always to curve the path of the swinging bob to the
right, as indicated in exaggerated form in Fig. 12-25(b). “As
with the Coriolis force on moving air, the effect does not depend
on the direction of swing—contrary to the intuition most of us
probably have that the rotation is likely to be more marked
when the pendulum swings along a north-south line than when
it swings east-west.

THE TIDES

Fig. 12-26 (a) Double
tidal bulge as it
would be if the earth’s
rotation did not dis-
place it. The size of
the bulge is enor-
mously exaggerated.
(b) Approximate true
orientation of the
tidal bulges, carried
eastward by the earth’s
rotation.

As everyone knows, the production of ocean tides is basically
the consequence of the gravitational action of the moon—and,
to a lesser extent, the sun. Thus we could have discussed this as
an example of universal gravitation in Chapter 8. The analysis
of the phenomenon is, however, considerably helped by intro-
ducing the concept of inertial forces as developed in the present
chapter.

The feature that probably causes the most puzzlement when
one first learns about the tides is the fact that there are, at most
places on the earth’s surface, two high tides every day rather
than just one. This corresponds to the fact that, at any instant,
the general distribution of ocean levels around the earth has two
bulges. On the simple model that we shall discuss, these bulges
would be highest at the places on the earth’s surface nearest to
and farthest from the moon [Fig. 12-26(a)]. While the earth
performs its rotation during 24 hr, the positions of the bulges
would remain almost stationary, being defined by the almost
constant position of the moon. Thus, if one could imagine the
earth completely girdled by water, the depth of the water as
measured from a point fixed to the earth’s solid surface would
pass through two maxima and two minima in each revolution.
A better approximation to the observed facts is obtained by con-
sidering the bulges to be dragged eastward by friction from the
land and the ocean floor, so that their equilibrium positions with
respect to the moon are more nearly as indicated in Fig. 12-26(b).

To conclude these preliminary remarks, we may point out
that the bulges are, in fact, also being carried slowly eastward
all the time by the moon’s own motion around the earth. This
motion (one complete orbit relative to the fixed stars every




Fig. 12-27  The or-
bital motion of the
earth.about the moon
does not by itself in-
volve any rotation of
the earth, the line
A1Biis carried into

. the parallel - configura-
tion A3Bs.

27.3 days) has the consequence that it takes more than 24 hr for
a given point on the earth to make successive passages past g
particular tidal bulge. Specifically, this causes the theoretical
time interval between successive high tides at a given place to be
close to 12 hr 25 min instead of precisely 12 hr (see Problem 2-15),
For example, if a high tide is' observed to occur at 4 p.M. one
day, its counterpart next day would be expected to occur at about
4:50 p.M.

Now let us consider the dynamical situation.. The first
point to appreciate is the manner in which the earth as & whole
is being accelerated toward the moon by virtue of the gravita-
tional attraction between them.  With respect to the CM of the
earth-moon system (inside the earth, at about 3000 miles from
the earth’s center), the earth’s center of mass has an acceleration
of magnitude a¢ given by Newton’s laws:

GMgM,,
MEac = —iz—
T
i.e.,
GM,,
ac ==~ (12-19)

where M, and r,, are the moon’s mass and distance. What may
not be immediately apparent is that every point in the earth
receives this same acceleration from the moon’s attraction.  If

Fig. 12-28 (a) Dif-
ference between cen-
trifugal force and the
eartl’s gravity at the
points nearest to and
farthest from the
moon. (b) Tide-
Dproducing force at an
arbitrary point P,

'

showing existence of a

transverse component. .

one draws a sketch, as shown in Fig. 12-27, of the arcs along
which the earth’s center and the moon travel in a certain span
of time, one is tempted to think of the earth-moon system as a
kind of rigid dumbbell that rotates as a unit about the center of
mass, O: It is true that the moon, for its part, does move so that
it presents always the same face toward the earth, but with the
earth itself things are different. If the earth were not rotating on
its axis, every point on it would follow a circular arc identical in
size and direction to the arc CiC, traced out by the earth’s
center. The line 4,B; would be translated into the parallel line
A,B,. The earth’s intrinsic rotation about its axis is simply
superposed on this general displacement and the associated
acceleration:

This is where noninertial frames come into the picture.
The dynamical consequences of the earth’s orbital motion around
the CM of the earth—moon system can be correctly described in
terms of an inertial force, —mae, experienced by a particle of
mass m wherever it may be, in or on the earth.  This force is
then added: to all the other forces that may be acting on the
particle.

In the model that we are using—corresponding to what is
called the equilibrium theory of the tides—the water around the
earth simply moves until it attains an equilibrium configuration
that remains stationary from the viewpoint of an observer on
the moon. Now we know that for a particle at the earth’s center,
the centrifugal force and the moon’s gravitational attraction are
equal and opposite. If, however, we consider a particle on the
earth’s surface at the nearest point to the moon [point A4 in
Fig. 12-28(a)], the gravitational force on it is greater than the
centrifugal force by an amount that we shall call fo:




GM,m GM,m

fO = (rm - RE’)2 B rm2

Since Rp < rp (Rg = ry/60), we can approximate this expres-
sion as follows:

_ GMm Re\ > }
fo= __rm2 I:(l rm) !

2GM,m
0

Le.,

Jo = Rg (12-20)
By an exactly similar calculation, we find that the tide-producing
force on a particle of mass m at the farthest point from the moon
[point B in Fig. 12-28(a)] is equal to —f,; hence we recognize
the tendency for the water to be pulled or pushed away from a
midplane drawn through the earth’s center (see the figure).

By going just a little further we can get a much better in-
sight into the problem. Consider now a particle of water at an
arbitrary point P [Fig. 12-28(b)]. Relative to the earth’s center,
C, it has coordinates (x, y), with x = Rgcosf, y = Ry sin 6.
The tidal force on it in the x direction is given by a calculation
just like those above:
~ ZGf;”"" x = ZG%’"’” Ry cos 0 (12-21)

m

fz

This yields the results already obtained for the points 4 and B
if we put § = 0 or . In addition to this force parallel to the

line joining the centers of the earth and the moon there is also,

however, a transverse force, because the line from P to the moon’s
center makes a small angle, «, with the x axis, and the net gravita-
tional force, GM,,m/r%, has a small component perpendicular to
X, given by

GM,m . .
f&=——2nsma (with r = rn)
r

Now we have

¥y
tang = ———
Fm — X

Since « is a very small angle [<tan™! (Rg/r,), which is about 1°]
we can safely approximate the above expression:

Fig. 12-29 Pattern
of tide-producing
forces around the
earth. The circular
dashed line shows
where the undisturbed
water surface would
be.

The component f, of the tidal force is then given by

M,,m GM,,m
= ~ G

y =
Fm3 FmS

Ry sin § (12-22)

We see that this transverse force is greatest at § = 7/2, at which
point it is equal to half the maximum value (fy) of f;. Using
Eqgs. (12-21) and (12-22) together, we can develop an over-all
picture of the tide-producing forces, as shown in Fig. 12-29.
This shows much more convincingly how the forces act in such
directions as to cause the water to flow and redistribute itself in
the manner already qualitatively described.

TIDAL HEIGHTS; EFFECT OF THE SUN!

How high ought the equilibrium tidal bulge to be? If you are
familiar with actual tidal variations you may be surprised at the

1This section goes well beyond the scope of the chapter as a whole but is
added for the interest that it may have.



result. The equilibrium tide would be a rise and fall of less than
2'ft.. We can calculate this by considering that the work done
by the tidal force in moving a particle of water from D to 4
(Fig. 12-29) is equivalent to the increase of gravitational po-
tential energy needed to raise the water through a height %
against the earth’s normal gravitational pull.' The distance 4 is
the difference of water levels between-4-and D. Now, using
Egs. (12-21) and (12-22) we have

dwW. = frdx 3 f,dy
GM,m
Fmd

GM Rgp 0
Wpoi = — ,;m[/ Zxdx—-/ ydy]
I 0 Ry

o Engm
S 2rg3

It

Qxdx — ydy)

Ry®

Setting this amount of work equal to the gain of gravitational
potential energy, mgh, we have

_ 3GM.Rs"

h==5 00 (12-23)

The numerical values of the relevant quantities are as follows:

G = 6.67T X 10~ mg/kg-sec2

M,, = 7.34 X 10%°kg
m = 3.84 X 10°m
Ry = 637 X 10°m

g = 9.80 rn/sec2

Substituting these in Eq. (12-23) we find
h= 054m = 21in,

The great excess over this calculated value in many places: (by
factors of 10 or even more) can only be explained by considering
the problem in detailed dynamical terms, in which the accumula-
tion of water in narrow estuaries, and resonance effects, can
completely alter the scale of the phenomenon. The value that
we have calculated should be approximated in the open sea.

The last point that we shall consider here is the effect of the
sun. Its mass and distance are as follows:

1Technically, this condition corresponds to the water surface being an energy
equipotential.

M, = 1.99 X 1030 kg
re = 1.49 X 1011 m

If we directly compare the gravitational forces exerted by the
sun and the moon on a particle on the earth, we discover that the
sun wins by a large factor:

Fo _ MJ/r” M (ra) oo
Fn  Mu/ra®  Mn\1s)

What matters, however, for tide production is the amount by
which these forces change from point to point over the earth.
This is expressed in terms of the gradient of the gravitational
force:

GMm
F(r) = —5
Fr
fe=oF= =25y, (12-24)

7

Putting M = My, r = rn, and Ar = £Rg, we obtain the forces
=f, corresponding to Eq. (12-20).

We now see that the comparative tide-producing forces due
to the sun and the moon are given, according to Eq. (12-24), by
the following ratio:

£ MJrE M (Y
?; = M/ = M - (12-25)

Substituting the numerical values, one finds

m

fs
=L = 0.465
iz

This means that the tide-raising ability of the moon exceeds that
of the sun by a factor of about 2.15. The effects of the two
combine linearly—and, of course, vectorially, depending on the
relative angular positions of the moon and the sun. When they
are on the same line through the earth (whether on the same side
or on opposite sides) there should be a maximum tide equal to
1.465 times that due to the moon alone. This should happen
once every 2 weeks, approximately, when the moon is new or
full. At intermediate times (half-moon) when the angular posi-
tions of sun and moon are separated by 90°, the tidal amplitude
should fall to a minimum value equal to 0.535 times that of the
moon. The ratio of maximum to minimum values is thus
about 2.7.




THE SEARCH FOR A FUNDAMENTAL INERTIAL FRAME

Bucket rotating
water stationary

q

The phenomena that we have discussed in this chapter seem to
leave us in no doubt that the acceleration of one’s frame of
reference can be detected by dynamical means. They suggest
that a very special status does indeed attach to inertial frames.
But how can we be sure that we have identified a true inertial
frame in which Galileo’s law of inertia holds exactly?

We saw at the very beginning of our discussion of dynamics

(a)

Bucket and
that the earth itself represents a good approximation to such a water rotating
together

frame for many purposes, especially for dynamical phenomena
whose scale in distance and time is small. But we have now seen
abundant evidence that a laboratory on the earth’s surface is
accelerated. If the laboratory is at latitude N (see Fig. 12-30),
each point in it is accelerating toward the earth’s axis of rotation
with an acceleration given by

ay = wZRcos\

Bucket stationary

with water rotating

w = 27/86,400 sec—?!
R=64%x10°m

This gives

ay = 3.4 X 102 cos A m/sec?

(c)

This acceleration of a frame of reference tied to the earth is,
as we know, not the simplest case of an accelerated frame. The
linearly accelerated frames with which we began this chapter are
much more readily analyzed. It was, however, the phenomena
associated with rotating frames that led Newton to his belief in
absolute space and in the absolute character of accelerations.
Near the beginning of the Principia he describes a celebrated

ay

Fig. 12-30 Acceleration toward the eartl’s
axis by virtue of its rotation.

Fig. 12-31 Main features of the experiment that
Newton quoted as evidence of the absolute character of
rotation and the associated acceleration.

experiment that he made with a bucket of water. It is an experi-
ment that anyone may readily repeat for himself. The bucket is
hung on a strongly twisted rope and is then released. There are
three key observations, depicted in Fig. 12-31:

1. At first the bucket spins rapidly, but the water remains
almost at rest, before the viscous forces have had time to set it
rotating. The water surface is flat, just as it was before the bucket
was released.

2. The watér and the bucket are rotating together; the
water surface has become concave (see Problem 12-18).

3. The bucket is suddenly stopped, but the body of water
continues to rotate, and its surface remains curved.!

Clearly, said Newton, the relative motion of the bucket and
the water is not the factor that determines the curvature of the
water surface. It must be the absolute rotation of the water in
space, and its attendant acceleration, that is at the bottom of
the phenomenon. And with the help of F = ma, we can account
for it quantitatively.

Newton’s argument is a powerful one. He could point to
further evidence in support of his views in the bulging of the
earth itself by virtue of its rotation. The equatorial diameter
of the earth is greater than the polar diameter by about 1 part
in 300. It seems almost obvious, even without detailed calcula-
tion, that this is closely tied to the fact that a,/g is about 555 at
the equator and is zero at the poles (although the detailed cal-
culation is, in fact, a bit messy).

Newton did not stop here, of course, He held the key of
universal gravitation. Even a nonrotating earth would not be
an inertial frame, because the whole earth is accelerating toward
the sun.

For this system we have

w = 2r/(3.16 X 107) sec~!
R =149 X 10''m
as = w?R = 5.9 X 1073 m/sec?

1Newton does not suggest that he actually performed this third step, but it
represents a natural completion of the experiment as one might perform it
for oneself.

S




If we could conceive of an object that was immune to the gravita-
tional attraction of the sun, it would not obey the law of inertia
as observed from a reference frame attached to the earth. From
Newton’s standpoint the acceleration is real and absolute and is
linked to the existence of a well-defined gravitational force pro-
vided by the sun.

That was about the end of the road as far as Newton was
concerned. For him the system of the stars provided the arena in
which the motions that he so brilliantly analyzed took place.
A reference frame attached to these fixed stars could be taken to
constitute a true inertial system, even though it might not coin-
cide with the absolute space in which he believed.

Today, thanks to the work of astronomers, we know a good
deal about the motions of some of those “fixed” stars. We have
come to be aware of our involvement in a general rotation of our
Galaxy. The sun would appear to be making a complete circuit
of the Galaxy in about 2.5 X 108 years at a radial distance of
about 2.5 X 10* light-years from the center. For this motion
we would have

27 /(8 % 1015) sec?

w ==
R~ 24X 1029m
as =~ 10719 m/sec?

It looks as though this acceleration can be reasonably accounted
for by means of Newton’s law of universal gravitation; if we
regard the solar system as having a centripetal acceleration under
the attraction of all the stars lying within its orbit. But no
dynamical experiments that we do on earth require us to take
into account this extremely minute effect—or, even, for most:
purposes, the revolution of the earth about the sun. (The rotation
of the earth on its own axis is, however, an important con-
sideration—and indeed an important aid in such matters- as
gyroscopic navigation.) Figure 12-32 schematizes  the three
rotating frames in which we find ourselves (we ignore here the
acceleration caused by the moon). .

But we still have not found an unaccelerated object to which
we can attach our inertial frame of reference. In fact, we could
extend this tantalizing search even further. There is some evi-
dence that galaxies themselves tend to cluster together in groups
containing a few galaxies to perhaps thousands. Our local group
consists of about 10 galaxies. Although individual galaxies
could have rather complex motions with respect to each other,

Fig. 12-32  Accelera-
tions of any laboratory
reference frame at-
tached to the earth’s
surface.

this group is believed to have a more or less common motion
through space.

So where are the “fixed” stars or other astronomical objects
to which we can attach our inertial frame of reference? It ap-
pears that referring to the “fixed stars” is not a solution and
contains an uncomfortable element of metaphysics (although we
frequently use this phrase as a shorthand designation for the
establishment of an inertial frame). This does not mean that
the astronomical search for an inertial frame has been without
value. For, at least up to the galactic level, it would seem that
apparent departures from the law of inertia can be traced to
identifiable accelerations of the reference frame in which motions
are observed. However, the quest is incomplete, and so it seems
likely to remain. Ultimately, therefore, we rely on an operational




SPECULATIONS ON THE ORIGIN OF INERTIA

8A9

( Berkeley, was perhaps the first person to argue’® that all motions,

)

ﬂ of mass could not, he said, be imagined in a space that was

!
|

represented by the stars do we have a basis for recognizing the
“existence of such motion.

definition based upon local dynamical experiments and observa-
tion. . We define an inertial frame to be one in which, experi-
mentally, Galileo’s law of inertia holds. The very existence of the
inertial property remains; however, a deep and fascinating prob-
lem; and we shall end the chapter with a few remarks about this
most fundamental feature of dynamics.

Not everyone accepted Newton’s: view that the phenomena
associated . with rotating objects ~demonstrated the absolute
character of  acceleration.” * The philosopher-bishop, George

including rotational ones, only have meaning as motions relative
to other objects. The circling of two spheres around their center

otherwise empty. Only when we introduce the background
About 150 years later (in 1872) the German philosopher

Ernst Mach presented the same idea in much more cogent form.
He wrote:

For me, only relative motions exist... and I can see, in this -

regard, no distinction between rotation and translation. Ob-
viously it does not matter if we think of the earth as turning
round on its axis, or at rest while the fixed stars revolve around
it ... But if we think of the earth at rest and the fixed stars
revolving around it, there is no flattening of the earth, no
Foucault’s experiment and so on—at least according to our
usual conception of the law of inertia. Now one can solve the
difficulty in two ways. Either all motion is absolute, or our law
of inertia is wrongly expressed... I prefer the second way.
The law of inertia must be so conceived that exactly the same
thing results from the second supposition as from the first. By
this it will be evident that in its expression, regard must be paid
to the masses of the universe.?

In his tract De Motu, written in 1717, 30 years after the publication of
Newton’s Principia.

2E. Mach, History and Root of the Principle of the Conservation of Energy;
(2nd ed.), Barth, Leipzig (1909). English translation of the 2nd edition by
P. Jourdain, Open Court Publishing Co., London, 1911. Actually the first
sentence of the quotation is taken from Mach’s classic book, The Science of
Mechanics, first published in 1883.
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/ Thus was born the profound and novel idea-—subsequently to

become famous as' Mach’s principle—that the inertial property
of any given object depends upon the presence and the distribu-
tion of other masses. - Einstein himself accepted this idea and
took it as a central principle of cosmology:

If one admits the validity of this point of view, then one
sees that the whole basis of dynamics is involved. For consider
the method that we described in Chapter 9 (p. 319) for finding
the ratio of the inertial masses of two objects. This ratio is given
as the negative inverse ratio of the accelerations that they produce
by their mutual interaction:

mi az

my @

This looks very simple and straightforward, but it is clear that
our ability to attach specific values to the individual accelera-
tions, as distinct from the total relative acceleration, depends
completely on our having identified a reference frame in which
these accelerations can be measured. For this purpose the
physical background provided by other objects is essential.

In looking critically at the phenomena of rotational motion,
Mach attacked some intuitive notions that are much more deep-
seated than any that we have in connection with straight-line
motion. He considered the evidence provided by Newton’s
rotating-bucket experiment which we discussed in the last section.
It is quite clear that the curvature of the water surface is related
overwhelmingly to the existence of rotation relative to the vast
amount of distant matter of the universe. When that relative
rotation is stopped, the water surface becomes flat. When the
bucket rotates and the water remains still (both relative to the
fixed stars), the‘shape of the water surface remains unaffected.
But, said Mach, that may be only a matter of degree. “No one,”
he wrote, “is competent to say how the experiment would turn
out if the sides of the vessel increased in thickness and mass
until they were ultimately several leagues thick.” His own belief
was that this rotation of a monster bucket would in fact generate
the equivalent of centrifugal forces on the water inside it, even
though this water had no rotational motion in the accepted sense.

This is a startling idea indeed. Let us present it in a slightly
different context. We know that the act of giving an object an
acceleration a, with respect to the inertial frame defined by the
fixed stars, calls into play an inertial force, equal to —ma, that
expresses the resistance of the object to being accelerated. In




Mach’s view we are equally entitled (indeed, compelled) to
accept a description of the phenomenon in a frame always
attached to the object itself. In this frame the rest of the universe
has the acceleration a’ (= —a) and the inertial force ma’ that
the object experiences must be ascribable to the acceleration of
the other masses.

This then brings us to the quantitative question: If a mass
M, at distance r, is given the acceleration a relative to a given
object, what contribution does it make to the total inertial force
ma that the object experiences? Since we know that the force is
proportional to m, we can argue on the grounds of symmetry
and relativity that it must be proportional to M also. But at
this point we enter a more speculative realm. A very suggestive
analogy is provided by electromagnetic interactions. If two
electric charges, ¢; and g,, are separated by a distance r, we
know that the static force exerted by g on gy is given by

Fig = f_qu?qg
where k is a constant that depends on the particular choice of
units. If, however, the charge ¢, is given the acceleration a there
is an additional force that comes into play, directly proportional
to a and inversely proportional to the distance:

kqiqea
l"fz=—-——qzq2
c2r

where c is the speed of light. Since this force falls off more slowly
with distance than the static interaction, it can survive in ap-
preciable magnitude at distances at which the static 1 /r? force
has become negligible. This is, in fact, the basis of the electro-
magnetic radiation field by which signals can be transmitted
over large distances.

Suppose now that we assume an analogous situation for
gravitational interactions. The basic static law of force is known
to be

GMm

Fig = )

The force on m associated with an acceleration of M would then
be given by

Flg = G—A;L@ (12-26)
c4r

On this basis we can estimate the relative magnitudes of the
contributions from various' masses. of interest-—the earth, the
sun, our own Galaxy, and the rest of the universe. ~All we have
to do is to calculate the values of M/r for these objects. The
results are shown in Table 12-1, using numbers to the nearest
power of 10 only. (The value of M for the universe as a whole
is the somewhat speculative value quoted in Chapter 1.) We

TABLE 12-1: RELATIVE CONTRIBUTIONS TO INERTIA

Source M, kg r, m M/r, kg/m M/r (relative)
Earth 1025 107 1018 10-8
Sun 1030 1011 1019 1077
Our Galaxy 1041 1021 1020 106
Universe 1052 1026 1026 1

see that, according to this theory, the effect of a nearby object,
even one as massive as the earth itself, would be negligible com-
pared to the effect of the universe at large.

The fotal inertial force called into existence if everything in
the universe acquires an acceleration a with respect to a given
object would be obtained by summing the forces Fi, of Eq.
(12-26) over all masses other than m itself:

Finertial = ma —f—i—l
This, however, should be identical with what we know to be the
magnitude of the inertial force as directly given by the value of
ma. Thus the theory would require the following identity to hold:

— = (12-27) -

universe

It is clear from Table 12-1 that even such a large local mass as
our Galaxy represents only a minor contribution; what we are
involved with is a summation over the approximately uniform
distribution of matter represented by the universe as a whole.
If we regard it as a sphere, centered on ourselves, of mean density
p and radius Ry (=~ 10'° light-years = 10%° m), we would have

M [ arpt ar

T
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The total mass is however given by

4
My = ?r PRU3

Thus we have, on this simple picture (based on Euclidean
geometry)

M 3 My .26
unge:rse r B 2 Ry ~ 10 kg/m

Using the values G =~ 1071 N-m?/kg? and ¢? ~ 10'7 m?/sec?,
we would then have

Taking into account the uncertainties in our knowledge of the
distribution of matter throughout space, many would say that
the factor of about 10 that separates the above empirical value
from the theoretical value (unity) called for by Eq. (12-27) is
not significant. The result is intriguing, to say the least, and many
cosmologists have accepted as fundamentally correct this develop-
ment from the primary ideas espoused by Mach and Einstein.’

12-1 A single-engine airplane flies horizontally at a constant speed v.
In the frame of the aircraft, each tip of the propeller sweeps out a
circle of radius R at the rate of n revolutions per second. Obtain an
equation for the path of a tip of the propeller as viewed from the earth.

12-2 A person observes the position of a post from the origin of a
reference frame (S') rigidly attached to the rim of a merry-go-round,
as shown in the figure. The merry-go-round (of radius R) is rotating
with angular velocity w, the distance of the post from the axis of the
merry-go-round is D, and at 7 = 0, the coordinates of P in S’ are
x' = D — R,y = 0 (equivalently, ¥ = D — R, § = 0).

(a) Find the coordinates #'(r), 6'(r) of the post; also give the
corresponding x'(7) and y'(?).

1For further reading on this fascinating topic, see, for example, R. H. Dicke,
“The Many Faces of Mach,” in Gravitation and Relativity (ed. H.-Y: Chin
and W. F. Hoffmann, eds.), W. A. Benjamin, New York, 1964; N. R. Hanson,
“Newton’s First Law,” and P. Morrison, “The Physics of the Large,” both
in Beyond the Edge of Certainty (R. G. Colodny, ed.), Prentice-Hall, Engle-
wood Cliffs, N.J., 1965; D. W. Sciama, The Unity of the Universe, Doubleday;
New York, 1961, and The Physical Foundations of General Relativity,
Doubleday, New York, 1969.

(b) By differentiating the results of (a), obtain the velocity and
acceleration of the post in both Cartesian and polar coordinates.
(c) Make a plot of the path of the post in §".

12-3 A boy is riding on a railroad flatcar, on level ground, that has
an acceleration « in the direction of its motion. At what angle with
the vertical should he toss a ball so that he can catch it without shift-
ing his position on the car?

12-4 A railroad ftrain traveling on a straight track at a speed of
20 m/sec begins to slow down uniformly as it enters a station and comes
to a stop in 100 m. A suitcase of mass 10 kg having a coefficient of
sliding friction u = 0.15 with the train’s floor slides down the aisle
during this deceleration period.

(a) What is the acceleration of the suitcase (with respect to the
ground) during this time?

(b) What is the velocity of the suitcase just as the train comes
to a halt?

(©) The suitcase continues sliding for a period after the train

has stopped. When it comes to rest, how far is it displaced from its
original position on the floor of the train?
12-5 A man weighs himself on a spring balance calibrated in newtons
which indicates his weight as mg = 700 N. What will he read if he
repeats the observation while riding an elevator from the first to the
twelfth floors in the following manner ?

(a) Between the first and third floors the elevator accelerates at
the rate of 2 m/sec?.

(b) Between the third and tenth floors the elevator travels with
the constant velocity of 7 m/sec.

(¢) Between the tenth and twelfth floors the elevator decelerates
at the rate of 2 m/sec?.

(d) He then makes a similar trip down again.

(e) If on another trip the balance reads 500 N, what can you
say of his motion? Which way is he moving?

12-6 1f the coefficient of friction between a box and the bed of a
truck is u, what is the maximum acceleration with which the truck can




37°

climb a hill, making an angle 8 with the horizontal, without the box’s
slipping on the truck bed?

12-7 A block of mass 2 kg rests on a frictionless platform. It is
attached to a horizontal spring of spring constant 8 N/m, as shown
in the figure. Initially the whole system is stationary, but at ¢ = 0 the
platform begins to move to the right with a constant acceleration of
2 m/sec.? As a result the block begins to oscillate horizontally relative
to the platform.

000900~ | —>
O) O]

(a) What is the amplitude of the oscillation?
(b) At t = 2w /3 sec, by what amount is the spring longer than
it was in its initial unstretched condition?

2kg 8 N/m ] 2 m/sec?

12-8 A plane surface inclined 37° (sin~! £) from the horizontal is
accelerated horizontally to the left (see the figure). The magnitude of
the acceleration is gradually increased until a block of mass m, orig-
inally at rest with respect to the plane, just starts to slip up the plane:
The static friction force at the block-plane surface is characterized by
=%
~ (a) Draw a diagram showing the forces acting on the block,

just before it slips, in an inertial frame fixed to the floor.
(b) Find the acceleration at which the block begins to slip.

(c) Repeat part (a) in the noninertial frame moving along with

the block.

12-9 - A nervous passénger in an airplane at takeoff removes his tie
and lets it hang loosely from his fingers. He observes that during the
takeoff run, which lasts 30 sec, the tie makes an angle of 15° with
the vertical. What is the speed of the plane at takeoff, and how much
runway is needed? Assume that the runway is level.

12-10 A uniform steel rod (density = 7500 kg/m3, ultimate- tensile
strength 5 X 10% N/m2) of length 1 m is accelerated along the direc-
tion of its length by a constant force applied to one end and directed
away from the center of mass of the rod. What is the maximum
allowable acceleration if the rod is not to break? If this acceleration
is exceeded, where will the rod break ? '

12-11 (a) A train slowed with deceleration . What angle would the
liquid level of a bowl of soup in the dining car have made with the
horizontal? A child dropped an apple from a height / and a distance 4
from the front wall of the dining car. What path did the apple take as
observed by the child? Under what conditions would the apple have
hit the ground ? The front wall?

3m

(b) As a reward for making the above observations, the parents
bought the child a helium-filled balloon at the next stop.: For fun,
they asked him what would happen to the balloon if the train left the
station with acceleration a’. Subsequently, they were surprised to
find his predictions correct. What did the precocious child answer?

12-12 An elevator has a downward acceleration equal to'g/3. Inside
the elevator is mounted a pulley, of negligible friction and inertia,
over which passes a string carrying two objects, of masses m and 3m,
respectively (see the figure).

(a) Calculate the acceleration of the object of mass 3m relative
to the elevator.

(b) Calculate the force exerted on the pulley by the rod that
joins it to the roof of the elevator.

(¢) How could an observer, completely isolated inside the
elevator, explain the acceleration of m in terms of forces that he him-
self could measure with the help of a spring balance?

12-13 In each of the following cases, find the equilibrium position as
well as the period of small oscillations of a pendulum of length L:

(1) In a train moving with acceleration a on level tracks.

(2) In a train free-wheeling on tracks making an angle § with the
horizontal.

(3) In an elevator falling with acceleration a.

12-14 The world record for the 16-1b hammer throw is about 70 m.
Assuming that the hammer is whirled around in a circle of radius
about 2 m before being let fly, estimate the magnitude of the pull
that the thrower must be able to withstand.

12-15 (3) A man rides in an elevator with vertical acceleration a.
He swings a bucket of water in a vertical circle of radius R. With
what angular velocity must he swing the bucket so that no water spills?

(b) With what angular frequency must the bucket be swung if
the man is on a train with horizontal acceleration a? (The plane of -
the circle is again vertical and contains the direction of the train’s
acceleration.)

12-16 Consider a thin rod of material of density p rotating with con-
stant angular velocity w about an axis perpendicular to its length.

(a) Show that if the rod is to have a constant stress S (tensile
force per unit area of cross section) along its length, the cross-sectional
area must decrease exponentially with the square of the distance
from the axis:

A= Age™™  where k = pw?/2S

[Consider a small segment of the rod between r and r 4 Ar, having a
mass Am = pA(r) Ar, and notice that the difference in tensions at its
ends is AT = A(SA).]
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(b) What is the maximum angular velocity wmax in terms of p;
Sthak, and k?

(cy The ultimate tensile strength of steel is about 102 N/m?2;
Estimate’ the maximum: possible number of rpm of a-steel rotor.for
which the “taper constant” k=100 m~2 (p = 7500 kg/m3).

12-17 A spherically shaped influenza virus particle; of mass 6 X
10-16 g and diameter 10~% cm, is in 4 water suspension in an- ultra-
centrifuge. It is 4 cm from the vertical axis of rotation, and the speed
of rotation is 10° rps. The density of the virus particle is 1.1 times that
of water.
(a) From the standpoint of a reference frame rotating with the
centrifuge, what is the effective value of “g”?
(b) Again from the standpoint of the rotating reference frame,
what is the net centrifugal force acting on the virus particle?
(c) Because of this centrifugal force, the particle moves radially
outward at a small speed v. The motion is resisted by a viscous force
given by Fr.s = 3mnvd, where d is the diameter of the particle and 7'is
the viscosity of water, equal to 102 cgs units (g/cm/sec). What'is 0?2
(d) Describe the situation from the standpoint of an inertial
frame attached to the laboratory.
[In (b) and (c), account must be taken of buoyancy effects. Think
of the ordinary hydrostatics problem of a body completely immersed
in a fluid of different density.]

12-18 (a) Show that the equilibrium form of the surface of a rotating
body of liquid is parabolic’ (or, strictly, a paraboloid of revolution):
This problem is most simply considered from the standpoint of the
rotating frame, given that a liquid cannot withstand forces tangential
to its surface and will tend toward a configuration in which such forces
disappear. It is instructive to consider the situation from the stand-
point of an inertial frame also.

(b) It has been proposed that a parabolic mirror for an astro-
nomical telescope might be formed from a rotating pool of mercury.
What rate of rotation (rpm) would make a mirror of focal length 20 m?

12-19 To a first approximation, an object released anywhere within
an orbiting spacecraft will remain in the same place relative to the
spacecraft. More accurately, however, it experiences a net force
proportional to its distance from the center of mass of the spacecraft.
This force, as measured in the noninertial frame of the craft, arises
from the small variations in both the gravitational force and the
centrifugal force due to the change of distance from the earth’s center.
Obtain an expression for this force as a function of the mass, m, of the
object, its distance AR from the center of the spacecraft, the radius R
of the spacecraft’s orbit around the earth, and the gravitational ac-
celeration gp, at the distance R from the earth’s center.

12-20 ‘A circular platform of radius 5 m rotates with an angular
velocity w = 0.2 rad/sec. A man of mass 100 kg walks with constant
velocity ‘0" =1 m/sec along a diameter of the platform. At time
t =0 he crosses the center'and at time .= 5 sec he jumps off the edge
of the platform.

(a) Draw a graph of the centrifugal force felt by the man as a
function of time in the interval ¢ = 0 to ¢ = 5 sec.

(b) Draw a similar graph of the Coriolis force. For both
diagrams, give the correct vertical scale (in newtons).

(c) Show on a sketch the direction of these forces, assuming
the platform to rotate in a clockwise direction as seen from above.

12-21 On a long-playing record (33 rpm, 12 in.) an insect starts to
crawl toward the rim. Assume that the coefficient of friction between
its legs and the record is 0.1. Does it reach the edge by crawling or
otherwise ?

12-22 A child sits on the ground near a rotating merry-go-round.
With respect to a reference frame attached to the earth the child has
no acceleration (accept this as being approximately true) and ex-
periences no force. With respect to polar coordinates fixed to the
merry-go-round, with origin at its center:

(a) What is the motion of the child?

(b) What is his acceleration?

(c) Account for this acceleration, as measured in the rotating
frame, in terms of the centrifugal and Coriolis forces judged to be
acting on the child.

12-23 The text (p. 516) derives the Coriolis force in the transverse (6)
direction by considering the motion of an object along a radial line
in the rotating frame. Correspondingly, if one considers an object
that is moving transversely in the rotating frame, one can obtain the
net radial force due to Coriolis and centrifugal effects. Consider a
particle on a frictionless turntable rotating with angular velocity w.
The particle is initially at rest relative to the turntable, at a distance r
from the axis of rotation.

(a) Set up a fixed coordinate system .S with axes x transversely
and y radially and with its origin O at the position of the particle at
t = 0 (see the figure). Set up another coordinate system S’, with
origin O’ and axes x’ and y’, which rotates with the turntable and
which coincides with S at ¢+ = 0. Show that at a later time ¢ the co-
ordinates of a given point as measured in S’ and S are related by the
following equations, where 8 = wf:

x' = xcosf + ysind + rsinf

y' = ycosf — xsinf — r(1 — cos6)

(b) Suppose that, at ¢ = 0, the particle is given a velocity v’




relative to O’ in the x’ direction. Its subsequent motion will be along
the x direction at the constant velocity v’ — wr relative to 0. Use
this to obtain its coordinates x’ and )’ at a later time ¢.

(c) Making the approximations for the case wf << 1, show that
for small values of ¢ one can put y' =~ a/12, where a} = &% — 2uwv’,
This corresponds to the required combination of centrifugal and
Coriolis accelerations.

(d) If you are feeling ambitious, apply the same kind of analysis
for an initial velocity in an arbitrary direction.

12-24 In an article entitled “Do Objects fall South?” [Phys. Rev.,
16, 246 (1903)], Edwin Hall reported the results of nearly 1000 trials
in which he allowed an object to fall through a vertical distance of
23 m at Cambridge, Mass. (lat. 42° N). He found, on the average; an
eastward deflection of 0.149 cm and a southerly deflection of 0.0045 cm.

(a) Compare the easterly deflection with what would: be ex-
pected from Eq. (12-17).

(b) Consider the fact that the development of an eastward
component of motion relative to the earth would indeed lead in turn
to a southerly component of Coriolis force. Without attempting any
detailed analysis, estimate the order of magnitude of the ratio of the
resulting southerly deflection to the predominant easterly deflection.
Do you think that an explanation of Hall’s results on southerly de-
flection can be achieved in these terms?

12-25 Calculate the Coriolis acceleration of a satellite in a circular
polar orbit as observed by someone on the rotating earth. Obtain the
direction of this acceleration throughout the orbit; thereby explaining
why the satellite always passes through the poles even though it is
subjected to the Coriolis force, Is there a similar force on a satellite
in an equatorial orbit?

12-26 TImagine that a frictionless  horizontal table, circular in shape
and of radius R; is fitted with a perfectly elastic rim; and that a dry-ice

puck is launched from a point on the rim toward the center, The
puck bounces back and forth across the table at constant speed v, but
because of the Coriolis force it does not quite follow a straight-line
path along a diameter. Consider the rate at which the path of the
puck gradually turns with respect to the table, and compare the result
with that for a Foucault pendulum at the same latitude, A.

12-27 In the text (p. 536) the height of the equilibrium tide is cal-
culated by considering the work done by the tide-producing force in
carrying a particle of water from point D to point 4 (see the figure).

2 S,

By considering the work from D to an intermediate point P, one can
obtain a general expression for the elevation or depression h(6) of the
water at an arbitrary point, relative to what the water level would be
in the absence of the tide-producing force. The calculation involves
two parts, as follows:

(a) Evaluate the work integral of the tide-producing force from
D(x =0,y = Rp) to P(x = Rgcosf,y = Rg sin ) for a particle of
water of mass m. Equating this to the difference of gravitational
potential energies, mg(hp — hp), one gets an expression for the dif-
ference hip — hp.

(b) The total volume of water is a constant. Hence, if ko
represents the water depth in the absence of the tide-producing force,
we must have

w2
/ 2R [h(O) — holsin8df = 0
0

Putting the results of (a) and (b) together, you should be able to
verify that the deviation of the water level from its undisturbed state
is proportional to 3 cos? 6 — 1.




