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Experimental demonstration of
information-to-energy conversion and validation
of the generalized Jarzynski equality
Shoichi Toyabe1, Takahiro Sagawa2, Masahito Ueda2,3, Eiro Muneyuki1* and Masaki Sano2*

In 1929, Leó Szilárd invented a feedback protocol1 in which a
hypothetical intelligence—dubbed Maxwell’s demon—pumps
heat from an isothermal environment and transforms it
into work. After a long-lasting and intense controversy
it was finally clarified that the demon’s role does not
contradict the second law of thermodynamics, implying that
we can, in principle, convert information to free energy2–6.
An experimental demonstration of this information-to-energy
conversion, however, has been elusive. Here we demonstrate
that a non-equilibrium feedback manipulation of a Brownian
particle on the basis of information about its location achieves
a Szilárd-type information-to-energy conversion. Using real-
time feedback control, the particle is made to climb up a
spiral-staircase-like potential exerted by an electric field and
gains free energy larger than the amount of work done
on it. This enables us to verify the generalized Jarzynski
equality7, and suggests a new fundamental principle of an
‘information-to-heat engine’ that converts information into
energy by feedback control.

To illustrate the basic idea of our feedback protocol, let us
consider a microscopic particle on a spiral-staircase-like potential
(Fig. 1). We set the height of each step comparable to the
thermal energy kBT , where kB is the Boltzmann constant and T is
temperature. Subjected to thermal fluctuations, the particle jumps
between steps stochastically. Although the particle sometimes
jumps to an upper step, downward jumps along the gradient
are more frequent than upward jumps. In this manner, on
average, the particle falls down the stairs unless it is externally
pushed up (Fig. 1a). Now, let us consider the following feedback
control: We measure the particle’s position at regular intervals,
and if an upward jump is observed we place a block behind the
particle to prevent subsequent downward jumps (Fig. 1b). If this
procedure is repeated, the particle is expected to climb up the
stairs. Note that, in the ideal case, energy to place the block can
be negligible; this implies that the particle can obtain free energy
without any direct energy injection. In such a case, what drives
the particle to climb up the stairs? This apparent contradiction
to the second law of thermodynamics, epitomized by Maxwell’s
demon, inspired many physicists to generalize the principles of
thermodynamics1,5,6. It is now understood that the particle is
driven by the ‘information’ gained by the measurement of the
particle’s location5,8.

In microscopic systems, thermodynamic quantities such as
work, heat and internal energy do not remain constant but
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Figure 1 | Schematic illustration of the experiment. a, A microscopic
particle on a spiral-staircase-like potential with a step height comparable to
kBT. The particle stochastically jumps between steps owing to thermal
fluctuations. As the downward jumps along the gradient are more frequent
than the upward ones, the particle falls down the stairs, on average.
b, Feedback control. When an upward jump is observed, a block is placed
behind the particle to prevent downward jumps. By repeating this cycle, the
particle is expected to climb up the stairs without direct energy injection.

fluctuate9,10. In fact, stochastic violations of the second law have
been observed11,12; nonetheless, the second law still holds, on
average, if the initial state is in thermal equilibrium: 〈1F−W 〉≤ 0,
where 1F is the free-energy difference between states, W the
work done on the system and 〈·〉 the ensemble average. However,
the feedback control enables us to selectively manipulate only
fluctuations that cause 1F −W > 0 such as upward jumps by
using the information about the system13–15. Here, ‘feedback’means
that control protocols depend on measurement outcomes of the
controlled system, in other words, ‘feedback control’ means a
‘closed-loop control’16. Our gedanken experiment shows that, by
employing feedback control, the information can be used as a
resource for free energy. In fact, Szilárd has developed a model
that converts one bit of information about the system to kBT ln2
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Figure 2 | Experimental set-up29,30. a, The particle was pinned at a single point of the top glass surface and exhibited rotational Brownian motion. To
impose a tilted periodic potential on the particle, an elliptically rotating electric field (blue and pink curves) was induced (not to scale; see Methods and
Supplementary Information for details). b, Typical potentials with opposite phases to be switched in the feedback control. The particle experienced a tilted
periodic potential with a period of 180◦. The height and slope were 3.05±0.03 kBT and 1.13±0.06 kBT/360◦ (mean±S.E., seven particles), respectively.
c, Feedback control. At time t=0, the particle’s angular position is measured. If the particle is observed in the angular region indicated by ‘S’, we switch the
potential at t= ε by inverting the phase of the potential (right). Otherwise, we do nothing (left). At t= τ , the next cycle starts. The location of region S is
altered by the switching. The potential wells correspond to the steps of the spiral stairs in Fig. 1. The switching of potentials corresponds to the placement
of the block.

of free energy or work1. In other words, the second law is
generalized17 as follows:

〈1F−W 〉≤ kBTI (1)

Here I is the mutual information content obtained by
measurements6,18 (see Methods). So far, the idea of a simple
thermal rectification by feedback control has found applications
such as the reduction of thermal noise15 and the rectification of
an atomic current at low temperature13. On the other hand, the
Szilárd-type Maxwell demon enables us to evaluate both the input
(used information content) and the output (obtained energy) of
the feedback control and relate them operationally. Therefore,
it has provided an ideal test-ground of information-to-energy
conversion and played the crucial role in the foundation of
thermodynamics. However, its experimental realization has been
elusive. In this experiment, we develop a newmethod to evaluate the
information contents and thermodynamic quantities of feedback
systems and demonstrate the Szilárd-type information-to-energy
conversion for the first time using a colloidal particle on a
spiral-staircase-like potential.

A dimeric particle comprising polystyrene beads (diameter =
287 nm) was attached to the top glass surface of a chamber filled
with a buffer solution (Fig. 2a). The particle was pinned at a
single point by a linker molecule; it exhibited rotational Brownian
motion (Supplementary Fig. S2). By using quadrant electrodes
imprinted on the bottom glass plate, we imposed 1MHz electric
fields to simultaneously create periodic potentials and constant
torque on the particle along the angle of rotation. By using this
new method, a tilted periodic potential with an ideal sinusoidal
shape for the particle can be achieved, which is a realization of
the spiral-staircase-like potential mentioned above (Fig. 2b, see also

Supplementary Information). A feedback control was carried out
under a microscope by constructing a real-time feedback system
including video capture, image analysis, potential modulation and
data storage.We repeated the following feedback cycle with a period
of τ =44ms and aminimum feedback delay of 1.1ms, as illustrated
in Fig. 2c. At t = 0, the particle’s angular position is measured.
If the particle is observed at the angular region indicated as ‘S’,
the potential is changed to that with an opposite phase at t = ε;
otherwise, no action is taken. At t = τ , the next cycle begins with the
measurement of the angular position. Region S was chosen for its
energy advantage; in region S, the potential energy before switching
is always higher than that after switching. In the case of small ε,
the particle is expected to be at rest around region S just before
the switching at t = ε and then jump to the rightward well of the
switched potential after the switching. On the other hand, for large
ε, the particle falls down in the well away from region S before the
switching. In this case, with a large probability, the particle jumps
down to the leftward well of the switched potential after the switch-
ing. In this manner, the feedback delay ε regulates the efficiency of
the feedback control. Note that, as τ = 44 ms is sufficiently larger
than the relaxation time in each well (∼10ms) and smaller than the
typical time to jump to neighbour wells (∼1 s), each feedback cycle
is supposed to be a transition between equilibrium states.

In Fig. 3a, typical trajectories with the feedback control are
shown. The trajectories are stepwise with a step size of 90◦, which
reflects the potential profile (Fig. 3b). We find that for small ε the
particle rotates unidirectionally while climbing up the potential,
whereas for large ε the particle goes down along the gradient. The
rotation rate decreasesmonotonicallywith ε, as expected (Fig. 3c).

We then focused on the energetics during a cycle. In Fig. 3d, we
show the difference between the obtained free energy 1F and the
work done on the particle by the switching, W , which is averaged
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Figure 3 | Trajectories, mean velocities and excess free energy under feedback control. a, Typical trajectories for different values of the feedback delay ε.
b, Magnified plot of the region indicated by a rectangle in a. The particle rotates with steps with a size of 90◦ reflecting the profile of the potential. Red
triangles indicate the timings of the switchings. c, Variation of the rotation rate with feedback delay ε. The rotation rate is defined as positive when the
particle climbs up the potential. Data of seven particles are averaged. Error bars indicate standard deviations among particles. d,1F, the free-energy
difference between the initial and final states of the cycle; W, the amount of work done on the particle by the switching calculated as the potential-energy
change associated with the switching (see Methods). In cycles without switching, W=0. 〈·〉 denotes the mean per cycle. In the shaded region, we obtain
the excess free energy beyond the conventional limitation of the second law of thermodynamics. Error bars indicate standard deviations among particles.

over a cycle (see Methods). We find that 〈1F−W 〉> 0 for small ε;
this implies that the particle gains a net free energy larger than the
work done by absorbing heat beyond the conventional limitation
of the second law of thermodynamics. For small ε, the switching
mostly occurs when the particle is in region S. In such cases, the
particle absorbs heat from an isothermal environment to reach
region S before the measurements at t = 0, then does work on the
electric field at the switching, and finally jumps to the rightward
well after the switching (Supplementary Fig. S7). Although such
an event is not prohibited even if we randomly switch potentials
without feedback control, it is typically an accidental and rare
event in accordance with the second law of thermodynamics
or the fluctuation theorem19–21. However, the feedback control
can increase the likelihood of occurrence of such an event. This
is the crux of the control by Maxwell’s demon. The resource
of the excess free energy is the information obtained by the
measurement. If the estimation error of the particle’s angular
position is negligible, the amount of information is characterized
by the Shannon information content I (ref. 22). In this study,
I =−p lnp− (1− p)ln(1− p), where p is the probability that the
particle is observed in region S (see Methods). As noted in (1), I
can be converted to free energy of up to kBTI (ref. 1). In our system,
for the shortest feedback delay (ε=1.1ms), p, I and 〈1F−W 〉were
0.059, 0.22 and 0.062 kBT , respectively (Supplementary Fig. S9).
This gives the efficiency of the information-to-energy conversion
as 〈1F −W 〉/kBTI = 28%. 100% efficiency can be achieved by
quasistatic information heat engines such as the Szilárd engine1.

Although the second law concerns only the average, or the
first-order cumulant, of the stochastic quantity1F−W , Jarzynski
pointed out that the second law naturally emerges as the first-order
cumulant expansion of the following equality that involves1F−W

to all orders23,24: 〈e(1F−W )/kBT 〉= 1. Recently, the Jarzynski equality,
which assumes a prescribed control scheme, was generalized to
systems with a feedback control as follows7 (see Methods for
heuristic derivation):

〈e(1F−W )/kBT 〉= γ (2)

where γ is an experimentally measurable quantity and is defined as
the sum of the probabilities that the time-reversed trajectories are
observed under time-reversed protocols for all possible protocols
(see Methods). From its definition, 0 ≤ γ ≤ 2 in our system.
Whereas I concerns the information obtained by the measure-
ments, γ quantifies how efficiently we use the obtained information
for the feedback control. If we control the system perfectly and
deterministically, a time-reversed trajectory is always realized under
the time-reversed protocol; γ then takes its maximum value. We
repeated time-reversed cycles with andwithout switchings to obtain
γ with a period of 220ms, which is sufficiently long to ensure that
the initial state of the cycle is relaxed to equilibrium.

Figure 4 shows that the conventional Jarzynski equality is vio-
lated in the presence of the feedback control. For large ε where
〈1F−W 〉 ≤ 0, the second law holds on average, but the Jarzynski
equality is violated. On the other hand, the generalized Jarzynski
equality (2) holds over a broad range of ε (Fig. 4a), showing that
equality (2) expresses the effect of feedback control to all orders.
γ seems to converge to unity in the limit of infinite ε; here, the
angular position at the switching becomes independent of that at
themeasurement, and the conventional Jarzynski equality recovers.
For a close examination, we plotted the discrepancy between γ and
〈e(1F−W )/kBT 〉 and its convergence in Fig. 4b and c, respectively. The
small discrepancy, less than 3%, for small ε (Fig. 4b) is supposed to
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Figure 4 | Verification of the generalized Jarzynski equality. a, Circles:
〈e(1F−W)/kBT〉. Rectangles: feedback efficacy γ . Data of seven particles are
averaged. b, Discrepancy of the equality, defined as
[〈e(1F−W)/kBT〉−γ ]/〈e(1F−W)/kBT〉, as a percentage. c, Convergence of the
estimate of 〈e(1F−W)/kBT〉 as a function of the number of cycles, plotted for
different feedback delays ε. Error bars indicate standard deviations
among particles.

result from the definition of the states. The equality assumes that
each cycle starts from an equilibrium state. However, as the proba-
bility that the particle escapes from the well is not zero, an equilib-
rium state cannot be realized in a precise sense. Although the typical
escape time (∼1 s) is much larger than the period of cycle (44ms),
it is possible that such a small discrepancy arises. It is known that
a large number of cycles is necessary for the Jarzynski equality to
converge owing to the exponential average24. We repeated more
than 100,000 cycles for each ε and confirmed the convergence of
the left-hand side of (2) (Fig. 4c). The validity of (2) verifies a
new fundamental principle of an ‘information-heat engine’, which
converts information to free energy, in terms of all orders.

As the energy converted from information is compensated for
by the demon’s energy cost to manipulate information2–4, the
second law of thermodynamics is not violated when the total
system including both the particle and demon is considered. In
our system, the demon consists of macroscopic devices such as
computers; the microscopic device gains energy at the expense
of the energy consumption of a macroscopic device. In other
words, by using information as the energy-transferring ‘medium’,
this information-to-energy conversion can be used to transport

energy to nanomachines25,26 even if it is not possible to drive them
directly (Supplementary Fig. S1). The next step will be to extract
work from the obtained free energy explicitly by coupling the
system with a microscopic transducer. This can cause a further
loss of the conversion efficiency. However, in this study, compared
with the obtained free energy of ∼kBT , a huge amount of energy
was consumed for the information processing at the macroscopic
level. The future challenge is to realize a nanoscale information-
processing device such as an artificial molecular motor27, in which
both the demon and the controlled system aremicroscopic.

Methods
Experimental set-up. A dimeric particle composed of particles (287 nm diameter,
Seradyn) was non-specifically attached to the top glass surface by means of a
streptavidin linker coated on the particle’s surface. To impose a tilted periodic
potential on the particle, an elliptically rotating electric field was induced by
applying 1MHz sinusoidal voltages on the quadrant electrodes patterned on the
bottom glass surface. The direction of the long axis of the elliptically rotating electric
field corresponds to the local minima of the potential. By changing the direction
of its axis, we inverted the phase of the potential. The particle was observed on an
upright microscope equipped with a high-speed camera at a period of 1.1ms with
an exposure time of 0.3ms. Potentials were measured from transition probabilities.
More than 100,000 feedback cycles were carried out for each feedback delay (ε).
See Supplementary Information for details.

Free energy and work. Each potential well separated by peaks was defined as
a state (Supplementary Fig. S6). The free energy of state k was calculated as
Fk =−kBT ln[

∫
dxe−U (x)/kBT ], where U (x) is the potential energy at angular

position x , and the integration is carried out in the angular region corresponding to
state k. As the shapes of all the wells are almost the same, the free-energy difference
between states is nearly equal to the difference of the potential energies of their local
minima. The work done on the particle,W , was calculated as the potential-energy
change associated with the switching: the potential energy after the switching minus
that before the switching. In cycles without switching,W =0.

Information content. For an event k with a probability of occurrence p(k),
the Shannon information content associated with this event is defined as
−lnp(k). This definition leads to well-defined properties that the information
content should satisfy22. The average Shannon information content becomes
I ≡−

∑
k p(k)lnp(k). Measurements are usually accompanied by errors, which

reduce the amount of information that can be used. Although I denotes the amount
of the information embedded in the system, the mutual information content,
I ′, denotes the amount of information that is obtained by the measurement7,18:
I ′ ≡

∑
k,mp(m|k)p(k)lnp(m|k)/p(k), where p(m|k) is the conditional probability

that the outcome of the measurement is the mth event when the kth event occurs
actually. If the measurement is free from error, p(m|k)= δk,m (δk,m = 1 if k =m,
and otherwise 0). In such a case, I ′= I . In the present experiment, we distinguished
two events: the particle is observed in region S or not with negligible measurement
errors. Then, the (average) Shannon information content per cycle becomes the
so-called binary entropy function: I =−plnp− (1−p)ln(1−p), where p is the
probability that the particle is observed in region S.

Generalized Jarzynski equality and feedback efficacy. Let us consider the
situations in which we make measurements without error and divide the
phase-space of the particle into several regions. Then, in each region, amore detailed
expression of the Jarzynski equality holds28: 〈e(1F−W )/kBT 〉A = P†(A)/P(A), where
〈···〉A is the ensemble average over trajectories under the condition that the particle
is observed in region A (A=S or outside S in our set-up) with probability P(A), and
P†(A) is the probability that the particle is observed in A under the time-reversed
control protocol. Without feedback control, this detailed equality reproduces the
Jarzynski equality as 〈e(1F−W )/kBT 〉 =

∑
AP(A)〈e

(1F−W )/kBT 〉A =
∑

AP
†(A)= 1. In

contrast, with feedback control, P†(A)A is no longer a single probability distribution
in terms of A, because the control protocols depend on A. Therefore,

∑
AP

†(A)
is not necessarily equal to unity. In such cases, the Jarzynski equality needs to be
generalized to (2), where γ =

∑
AP

†(A).
We measured the feedback efficacy, γ , as follows (see Supplementary Fig.

S8). In the forward feedback cycle, we measured the particle’s angular position
at t = 0 and (1) switched or (2) did not switch the potential at t = ε depending
on the angular position. Corresponding time-reversed trajectories are that the
particle is observed in the region (1) S at t = τ after the switching at t = τ −ε or
(2) outside S without switching. Let the occurrence probabilities of time-reversed
trajectories under timer-reversed protocols be psw and pns, respectively. Then, γ is
γ = psw+pns. From its definition, if there are m states to be distinguished (m= 2
in our experiment: whether the particle is in region S or not), 0≤ γ ≤m. We
repeated time-reversed cycles with/without switchings to obtain γ with a period
of 220ms, which is sufficiently long to ensure that the initial state of the cycle is
relaxed to equilibrium.
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