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This paper offers some qualitative understanding of the chemical potential, a topic that students
invariably find difficult. Three ‘‘meanings’’ for the chemical potential are stated and then supported
by analytical development. Two substantial applications—depression of the melting point and
batteries—illustrate the chemical potential in action. The origin of the term ‘‘chemical potential’’
has its surprises, and a sketch of the history concludes the paper. ©2001 American Association of Physics

Teachers.
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I. INTRODUCTION

It was the semester’s end in spring 1997, and I had
finished teaching a course in thermal physics. One of
students said to me, ‘‘Now I really understand temperatu
but what is the meaning of the chemical potential?’’ Clear
a topic needed greater emphasis, both in class and in the
text. I vowed to do better the next year, and—altogether
spent several years looking into responses to the questio

The present article first describes three meanings of
chemical potential, next develops them analytically, and
nally gives two substantial examples of how the chemi
potential is used. Some observations are interleaved, and
paper concludes with a short history.

For whom is this paper intended? I wrote primarily f
someone—instructor or student—who already knows ab
the chemical potential but would like to understand it bett
Some portions of the paper are original, but much of it co
sists of material that is common knowledge among textb
writers. I have gathered together interpretations, insights,
examples to construct a kind of tutorial or review article
the chemical potential.

II. MEANINGS

Any response to the question, ‘‘What is the meaning of
chemical potential?,’’ is necessarily subjective. What sa
fies one person may be wholly inadequate for another. H
I offer three characterizations of the chemical potential~de-
noted bym! that capture diverse aspects of its manifold n
ture.

~1! Tendency to diffuse. As a function of position, the
chemical potential measures the tendency of particle
diffuse.

~2! Rate of change. When a reaction may occur, an extr
mum of some thermodynamic function determines eq
librium. The chemical potential measures the contrib
tion ~per particle and for an individual species! to the
function’s rate of change.

~3! Characteristic energy. The chemical potential provides
characteristic energy: (]E/]N)S,V , that is, the change in
energy when one particle is added to the system at c
stant entropy~and constant volume!.
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These three assertions need to be qualified by contex
conditions, as follows.

~a! Statement~1! captures an essence, especially when
temperatureT is uniform. When the temperature varie
spatially, diffusion is somewhat more complex and
discussed briefly under the rubric ‘‘Further comment
in Sec. IV.

~b! Statement~2! is valid if the temperature is uniform an
fixed. If, instead, the total energy is fixed and the te
perature may vary from place to place, thenm/T mea-
sures the contribution. When one looks for conditio
that describe chemicalequilibrium, one may focus on
each locality separately, and then the division by te
perature is inconsequential.

~c! The system’s ‘‘external parameters’’ are the mac
scopic environmental parameters~such as externa
magnetic field or container volume! that appear in the
energy operator or the energy eigenvalues. All exter
parameters are to be held constant when the deriva
in statement~3! is formed. The subscriptV for volume
illustrates merely the most common situation. Note th
pressure does not appear in the eigenvalues, and so
the present usage—pressure is not an external pa
eter.

These contextual conditions will be justified later. Th
next section studies diffusive equilibrium in a familiar co
text, ‘‘discovers’’ the chemical potential, and establishes
characterization in statement~1!.

III. THE TENDENCY TO DIFFUSE

The density of the Earth’s atmosphere decreases w
height. The concentration gradient—a greater concentra
lower down—tends to make molecules diffuse upwa
Gravity, however, pulls on the molecules, tending to ma
them diffuse downward. The two effects are in balance, c
celing each other, at least on an average over short time
small volumes. Succinctly stated, the atmosphere is in e
librium with respect to diffusion.

In general, how does thermal physics describe such a
fusive equilibrium? In this section, we consider an ideal is
thermal atmosphere and calculate how gas in thermal e
librium is distributed in height. Certain derivatives emer
423p/ © 2001 American Association of Physics Teachers
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and play a decisive role. The underlying purpose of the s
tion is to discover those derivatives and the method that
ploys them.

Figure 1 sets the scene. Two volumes, vertically thin
comparison with their horizontal extent, are separated
height by a distanceH. A narrow tube connects the uppe
volumeVu to the lower volumeVl . A total numberNtotal of
helium atoms are in thermal equilibrium at temperatureT;
we treat them as forming an ideal gas. What value should
anticipate for the numberNu of atoms in the upper volume
especially in comparison with the numberNl in the lower
volume?

We need the probabilityP(Nl ,Nu) that there areNl atoms
in the lower volume andNu in the upper. The canonica
probability distribution gives us that probability as a su
over the corresponding energy eigenstatesC j :

P~Nl ,Nu!5 (
statesC j with Nl in Vl

and Nu in Vu

exp~2Ej /kT!

Z

[
Z~Nl ,Nu!

Z
. ~1!

The symbolZ denotes the partition function for the enti
system, andk is Boltzmann’s constant. The second equal
merely defines the symbolZ(Nl ,Nu) as the sum of the ap
propriate Boltzmann factors.

In the present context, an energy eigenvalueEj splits natu-
rally into two independent pieces, one for the particles in
lower volume, the other for the particles in the upper v
ume. Apply that split to the energy in the Boltzmann fact
Imagine holding the state of theNu particles in the upper
volume fixed and sum the Boltzmann factor exp(2Ej /kT)
over the states of theNl particles in the lower volume. Tha
step generates the partition functionZl(Nl) for the lower
volume times a Boltzmann factor with just the energy of t
particles in the upper volume. Now sum over the states of
Nu particles in the upper volume. The outcome is the t
form

Z~Nl ,Nu!5Zl~Nl !3Zu~Nu!. ~2!

~More detail and intermediate steps are provided in Cha
of Ref. 1.!

Fig. 1. The context. The narrow tube allows atoms to diffuse from o
region to the other, but otherwise we may ignore it.
424 Am. J. Phys., Vol. 69, No. 4, April 2001
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Common experience suggests that, given our specific
macroscopic system, the probability distributionP(Nl ,Nu)
will have a single peak and a sharp one at that. An effici
way to find the maximum inP(Nl ,Nu) is to focus on the
logarithm of the numerator in Eq.~1! and find its maximum.
Thus one need only differentiate the logarithm of the rig
hand side of Eq.~2!. Note that increasingNl by one unit
entails decreasingNu by one unit; via the chain rule, tha
introduces a minus sign. Thus the maximum in the proba
ity distribution arises whenNl andNu have values such tha

] ln Zl

]Nl
5

] ln Zu

]Nu
. ~3!

The equality of two derivatives provides the criterion f
the most probable situation. This is the key result. The f
lowing paragraphs reformulate the criterion, explore its i
plications, and generalize it.

First, why reformulate? To connect with functions that a
defined in thermodynamics as well as in statistical mech
ics. A system’s entropyS can be expressed in terms of lnZ,
T, and the estimated energy^E&:

S5
^E&
T

1k ln Z. ~4!

Thus the Helmholtz free energyF provides a good alterna
tive expression for lnZ:

F[^E&2TS52kT ln Z. ~5!

Equation~3! indicates that the rate of change ofF with par-
ticle number is the decisive quantity; so define thechemical
potentialm by the relation2

m~T,V,N![S ]F

]ND
T,V

5F~T,V,N!2F~T,V,N21!. ~6!

In the language of the chemical potential, the criterion
the most probable situation, Eq.~3!, becomes

m l~T,Vl ,Nl !5mu~T,Vu ,Nu!. ~7!

The chemical potentials for atoms in the lower and up
volumes are equal.

But what about the less probable situations? And the
proach to the most probable situation? Some detail will h
here. The partition functionZu(Nu) for the upper volume has
the explicit form

Zu~Nu!5
@~Vu /l th

3 !e2mgH/kT#Nu

Nu!
, ~8!

where l th[h/A2pmkT defines the thermal de Brogli
wavelength and wherem denotes an atom’s rest mass. T
chemical potential for the atoms in the upper volume is th

mu5mgH1kT lnS Nu

Vu
l th

3 D . ~9!

For the atoms in the lower volume,m l has a similar structure
but the gravitational potential energy is zero.

The explicit forms form l and mu enable one to plot the
chemical potentials as functions ofNl at fixed total number
of atoms. Figure 2 displays the graphs. Suppose we fo
the gaseous system with the numberNl significantly below
its ‘‘equilibrium’’ or most probable value. Almost surely at
oms would diffuse through the connecting tube fromVu to

e
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Vl and would increaseNl toward (Nl)most probable. Atoms
would diffuse from a region where the chemical potentia
mu to a place where it ism l , that is, they would diffuse
toward smaller chemical potential. In Newtonian mechan
a literal force pushes a particle in the direction of sma
potential energy. In thermal physics, diffusion ‘‘pushe
particles toward smaller chemical potential.

The details of this example justify the first characterizat
of the chemical potential: as a function of position, t
chemical potential measures the tendency of particles to
fuse. In general, in the most probable situation, which is
only situation that thermodynamics considers, the chem
potential is uniform in space. Before the most probable s
ation becomes established, particles diffuse toward lo
chemical potential.

Alternative derivations of these conclusions a
available.3,4 Their great generality complements the deriv
tion given here, whose specificity provides an opportunity
explore the ‘‘tendency to diffuse’’ in graphic detail. More
over, if one uses Eq.~9! and its analog form l in Eq. ~7!, then
one finds that the number densityN/V drops exponentially
with height. Recovering the ‘‘isothermal atmosphere’’ pr
vides students with a welcome sense of confidence in
formalism.

Just as temperature determines the diffusion of energy~by
thermal conduction and by radiation!, so the chemical poten
tial determines the diffusion of particles. This parallel is pr
found, has been noted by many authors,5 and goes back a
least as far as Maxwell in 1876, as Sec. IX will display.

A. Uniformity

Martin Bailyn remarks sagely, ‘‘The@chemical potentials
for various particle species# ...will be uniform in equilibrium
states. ... In this respect,@they# supplant density as the pa
rameter that is uniform in material equilibrium.’’6

That uniformity, moreover, holds good when two or mo
phases coexist, such as liquid and solid water, or liqu
solid, and vapor. The equality of chemical potentials acros
phase boundary can serve as the basis for deriving
Clausius–Clapeyron equation~which gives the slope of the
phase boundary in a pressure-temperature plane!.

If a particle species is restricted to two disjoint region
however, then the chemical potential may have different v

Fig. 2. Graphs of the two chemical potentials as functions ofNl and Nu

5(Ntotal2Nl). The arrows symbolize the direction of particle diffusion rel
tive to the graphed values of the chemical potentials~andnot relative to the
local vertical!. WhenNl is less than its most probable value, particles d
fuse toward the lower volume and its smaller chemical potential; whenNl is
greater than its most probable value, diffusion is toward the upper vol
and its smaller chemical potential.
425 Am. J. Phys., Vol. 69, No. 4, April 2001
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ues in each region. For example, suppose the vertical tub
Fig. 1 were provided with a valve, closed initially, and th
the lower volume were initially empty. If the valve were the
opened, atoms would diffuse downward, but the valve co
be closed again before the chemical potentials in the lo
and upper regions reached equality. Equilibrium could
achieved in each region separately—but with unequal che
cal potentials.

Later, when we discuss batteries, we will find such a s
ation. When a battery is on open circuit, the conduction el
trons in the two~disjoint! metal terminals generally hav
different chemical potentials.

IV. EXTREMA

Now we focus on the connection between the chem
potential and extrema in certain thermodynamic function

Return to the canonical probability distribution in Sec.
and its full spectrum of values forNl andNu . With the aid of
Eqs. ~5! and ~2!, we can form a composite Helmholtz fre
energy by writing

F~Nl ,Nu![2kT ln Z~Nl ,Nu!5Fl~Nl !1Fu~Nu!. ~10!

Note especially the minus sign. WhereP(Nl ,Nu) and hence
Z(Nl ,Nu) are relatively large and positive,F(Nl ,Nu) will be
negative. At the maximum forP(Nl ,Nu) and hence the
maximum forZ(Nl ,Nu), the functionF(Nl ,Nu) will have
its minimum. Thus we find that the composite Helmho
free energy has aminimumat what thermodynamics calls th
equilibrium values ofNl andNu . This is a general property
of the Helmholtz free energy~at fixed positive temperatureT
and fixed external parameters!.7

A. Chemical equilibrium

A chemical reaction, such as

H21Cl2
2HCl, ~11!

can come to equilibrium under conditions of constant te
perature and volume. The equilibrium is characterized b
minimum in the Helmholtz free energy. How is such a co
dition described with the various chemical potentials?

As a preliminary step, let us generalize the chemical re
tion under study. We can write the HCl reaction in the alg
braic form

2H22Cl212HCl50, ~12!

which expresses—among other things—the conservatio
eachatomicspecies~H and Cl! during the reaction. Adopting
this pattern, we write the generic form for a chemical rea
tion as

b1B11b2B21¯1bnBn50, ~13!

where each molecular species is represented by a symbi
and the corresponding numerical coefficient in the react
equation is represented by the symbolbi . For the products of
a reaction, the coefficientsbi are positive; for the reactants
they are negative. Altogether, the set$bi% gives the number
change in each molecular species when the reaction oc
once. The coefficients$bi% are calledstoichiometric coeffi-
cients ~from the Greek roots,stoikheion, meaning ‘‘ele-
ment,’’ andmetron, meaning ‘‘to measure’’!.

At equilibrium, the Helmholtz free energy will attain
minimum. Imagine that the reaction takes one step aw

e
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from equilibrium: the numberNi of molecular species Bi
changes byDNi , which equals the stoichiometric coefficie
bi . Then the change in the Helmholtz free energy is

DF5(
i

S ]F

]Ni
D

T,V, other N’s

DNi

5(
i

m ibi50. ~14!

The partial derivatives are precisely the chemical potenti
and the zero follows because the imagined step is away f
the minimum. Equilibrium for the chemical reaction implie
a constraint among the various chemical potentials:

(
i

m ibi50. ~15!

The constraint provides the key equation in deriving
chemists’ law of mass action.

Equation~14! provides the initial justification for the sec
ond characterization of the chemical potential: when a re
tion may occur, the chemical potential measures the con
bution ~per particle! to the rate of change of the functio
whose extremum determines equilibrium.

Note that the rate of change isnot a rate of change with
time. Rather, it is a rate of change as the reaction proce
step by step.

B. Other extrema

In different circumstances, other thermodynamic functio
attain extrema. For example, under conditions of fixed
ergy and fixed external parameters, the entropy attain
maximum. Does the second characterization continue
hold?

To see how the extrema inSand in the Gibbs free energ
G are related to the chemical potential, we need equiva
expressions form, ones that correspond to the variables th
are held constant while the extrema are attained. To de
those expressions, start with the change inF when the sys-
tem moves from one equilibrium state to a nearby equi
rium state. The very definition ofF implies

DF5DE2TDS2SDT. ~16!

~Here E is the thermodynamic equivalent of the estimat
energy^E& in statistical mechanics.!

A formal first-order expansion implies

DF5S ]F

]TD
V,N

DT1S ]F

]VD
T,N

DV1S ]F

]ND
T,V

DN. ~17!

The last coefficient is, of course, the chemical potentialm.
The first two coefficients, which are derivatives at const
N, can be evaluated by invoking energy conservation. W
the system moves from an equilibrium state to another
nearby, energy conservation asserts that

TDS5DE1PDV, ~18!

providedN is constant. Use Eq.~18! to eliminateTDS in Eq.
~16! and then read off the coefficients that occur in Eq.~17!
as 2S and 2P, respectively. Insert these values into E
~17!; equate the right-hand sides of Eqs.~16! and ~17!; and
then solve forDE:

DE5TDS2PDV1mDN. ~19!
426 Am. J. Phys., Vol. 69, No. 4, April 2001
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This equation expresses energy conservation under thegen-
eralization that the numberN of particles may change bu
also under therestriction that all changes are from one equ
librium state to a nearby equilibrium state.8 The involuted
steps in the present derivation are required because, a
start, we knew an expression form only in terms of the
Helmholtz free energy.

Now, however, from Eq.~19! we can read off that

m5S ]E

]ND
S,V

. ~20!

Next, divide Eq.~19! by T, solve forDS, and read off the
relation

2
m

T
5S ]S

]ND
E,V

. ~21!

Finally, addD(PV) to both sides of Eq.~19!, rearrange to
haveDG[D(E2TS1PV) on the left-hand side, and rea
off that

m5S ]G

]ND
T,P

. ~22!

If a reaction comes to equilibrium at fixed temperature a
pressure, the Gibbs free energy attains a minimum. Equa
~22! shows that the chemical potential then plays the sa
role that it did under conditions of fixed temperature a
volume. Gibbs often considered the case of minimum ene
at fixed entropy and external parameters.9 Now Eq. ~20!
shows that the chemical potential retains the same role.

If entropy, however, is the function that attains an ext
mum, then the pattern is broken. Equation~21! shows that
the quotientm/T takes the place ofm alone. Merely on di-
mensional grounds, some alteration was necessary.10

All in all, this section supports the second characterizat
and shows how the entropy extremum departs from the t
cal pattern.

C. Further comments

The sum in Eq.~14! may be split into a difference o
subsums over products and reactants, respectively. In
subsum, the chemical potentials are weighted by the co
sponding stoichiometric coefficients~all taken positively
here!. If the system has not yet reached thermodynamic eq
librium, the entire sum in Eq.~14! will be nonzero. Evolution
is toward lower Helmholtz free energy. That implies evol
tion toward products if their weighted sum of chemical p
tentials is smaller than that of the reactants. Here is the a
log of particle diffusion in real space toward lower chemic
potential: a chemically reactive system evolves toward
side—products or reactants—that has the lower weigh
sum of chemical potentials.

One may generalize the term ‘‘reaction’’ to apply to c
existence of phases. One need only interpret the term
mean ‘‘transfer of a particle from one phase to anothe
Thereby one recaptures the property that, at thermodyna
equilibrium, the chemical potential is spatially uniform~in
each connected region to which diffusion can carry the p
ticles!.

The present paragraph redeems the promise in Sec.
return to diffusion. In an isothermal context, diffusion is d
termined by the gradient of the chemical potential, gradm, as
426Ralph Baierlein
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developed in Sec. III. In a more general context, one can
to the first-order theory of relaxation toward equilibrium
Among the theory’s most appropriate variables are der
tives of the entropy density with respect to the number d
sity and the energy density. These derivatives are2m/T @by
Eq. ~21!# and 1/T. Thus particle diffusion is determined by
linear combination of grad (m/T) and grad (1/T); each term
enters the sum with an appropriate~temperature-dependen!
coefficient.11

When a system—initially not in thermal equilibrium—
evolves toward equilibrium, the process can be comp
sometimes purely diffusive~in the random-walk sense!,
other times hydrodynamic. James McLennan’sIntroduction
to Nonequilibrium Statistical Mechanics, cited in Ref. 11,
provides an excellent survey. Because of the diversity
processes, I use the word ‘‘diffusion’’ broadly in this pape
Its meaning ranges from a strict random walk to mer
‘‘spreads out.’’

V. CHARACTERISTIC ENERGY

Now we turn to the phrase ‘‘characteristic energy’’ as p
viding a meaning for the chemical potential. Here the cle
est expression form is the form (]E/]N)S,V : the system’s
energy change when one particle is added under condit
of constant entropy~and constant external parameters!. Be-
cause entropy is so often a crucial quantity, an energy cha
at constant entropy surely provides a characteristic ene
The question can only be this: in which contexts does
characteristic energy play a major role?

I will not attempt a comprehensive response but rather
focus on a single context, arguably the most significant c
text in undergraduate thermal physics. Recall that the Fer
Dirac and Bose–Einstein distribution functions depend
the energy«a of a single-particle state~labeled by the index
a! through the difference«a2m. Why does the chemica
potential enter in this fashion?

Derivations of the distribution functions make compa
sons of entropies~or multiplicities12!, either directly or im-
plicitly ~through the derivation of antecedent probability d
tributions!. In entropy lies the key to whym appears, and two
routes that use the key to explain the appearance com
mind.

~1! Additive constant. The physical context determines th
set $«a% of single-particle energies only up to an arbitra
additive constant. When«a appears in a distribution func
tion, it must do so in a way that is independent of our cho
of the additive constant. In short,«a must appear as a differ
ence. With what quantity should one compare«a and form
the difference?

The energy«a describes the system’s energy change wh
one particle is added in single-particle statewa . Typically,
such an addition induces a change in entropy. So the c
parison might well be made with (]E/]N)S,V , the system’s
energy change when one particle is added under condit
of constant entropy~and constant external parameters!. The
derivative, of course, is another expression for the chem
potential, as demonstrated in Eq.~20!.

~2! Total entropy change when a particle is added. Some
derivations of the distribution functions entail computing t
total entropy change of either the system or a reservoir w
a particle is added to the system of interest.13 To avoid irrel-
427 Am. J. Phys., Vol. 69, No. 4, April 2001
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evant minus signs, focus on the system. When a particle
energy«a is added, the entropy change consists of two pa

DS5S ]S

]ED
N,V

3«a1S ]S

]ND
E,V

31

5
1

T
3«a1S 2m

T D315
~«a2m!

T
. ~23!

The chemical potential enters through the relationship~21!.
As explained in Ref. 10, derivatives ofS andE with respect
to N are necessarily proportional to each other~at fixed ex-
ternal parameters!. So, the second term must be expressi
in terms ofm, which appears again as a characteristic ene

The notion of ‘‘characteristic energy’’ can be mad
broader and looser. Chemists often focus on Eq.~22! and
characterize the chemical potential as the ‘‘partial mo
Gibbs free energy’’~provided that particle numbers are me
sured in moles!. Some authors note that, when only one p
ticle species is present, Eq.~22! is numerically equivalent to
the relationm5G/N, and they characterize the chemical p
tential as the Gibbs free energy per particle.14 For typical
physics students, however, the Gibbs free energy remains
most mysterious of the thermodynamic functions, and
such characterizations are of little help to them.15

VI. NUMERICAL VALUES

This section is devoted to qualitative reasoning about
numerical value that the chemical potential takes on. T
aim is to develop more insight and greater familiarity. F
the most part, the reasoning is based on the form form given
in Eq. ~20!.

A. Absolute zero

In the limit as the temperature is reduced to absolute z
the system settles into its ground state, and its entropy
comes zero.~For a macroscopic system, any degeneracy
the ground state, if present, would be insignificant, and so
description assumes none.! Adding a particle at constant en
tropy requires that the entropy remain zero. Moreover, a
the addition, the system must again be in thermal equi
rium. Thus the system must be in the ground state of the n
system of (N11) particles.@One could preserve the con
straint ‘‘entropy50’’ by using a single state~of the entire
system! somewhat above the ground state, but that proced
would not meet the requirement of thermal equilibrium.#

For a system of ideal fermions, which are subject to
Pauli exclusion principle, we construct the new ground st
from the old by filling a new single-particle state at the Fer
energy«F . Thus the system’s energy increases by«F , and
that must be the value of the chemical potential.

Consider next bosons, such as helium atoms, that ob
conservation law: the number of bosons is set initially a
remains constant in time~unless we explicitly add or subtrac
particles!. For such bosons~when treated as a quantum ide
gas!, we construct the new ground state by placing anot
particle in the single-particle state of lowest energy. T
chemical potential will equal the lowest single-particle e
ergy,«1 .
427Ralph Baierlein
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B. Semi-classical ideal gas

For an ideal gas in the semi-classical domain16 ~such as
helium at room temperature and atmospheric pressure!, the
probability that any given single-particle state is occupied
quite small. An additional atom could go into any one o
great many different single-particle states. Moreover,
may use classical reasoning about multiplicity and entrop17

Adding an atom, which may be placed virtually anywhe
surely increases the spatial part of the multiplicity and he
tends to increase the entropy. To maintain the entropy c
stant, as stipulated in Eq.~20!, requires that the momentum
part of the multiplicity decrease. In turn, that means le
kinetic energy, and so the inequalityDE,0 holds, which
implies that the chemical potential is negative for an id
gas in the semi-classical domain.~Implicit here is the stipu-
lation that the energyE is strictly kinetic energy. Neither a
potential energy due to external forces nor a rest ene
mc2, appears.!18

In this subsection and in the preceding one, we determi
DE ~or placed a bound on it! by assessing the change in th
system’s energy as the system passed from one equilib
state to another. How the additional particle is introduc
and what energy it may carry with it are secondary matte
Why? Because the system is required to come to equilibr
again and to retain—or regain—its original entropy valu
To satisfy these requirements, energy may need to be
tracted by cooling or added by heating. Such a process
automatically compensate for any excess or deficiency in
energy change that one imagines to accompany the lit
introduction of the extra particle.

To summarize, one compares equilibrium states ofN and
N11 particles, states that are subject to certain constra
such as ‘‘same entropy.’’ This comparison is what det
minesDE. The microscopic process by which one imagin
one particle to have been introduced may be informative,
it is not decisive and may be ignored.

Next, consider the explicit expression for a chemical p
tential in Eq.~9!—but first delete the termmgH. The deriva-
tion presumed that the thermal de Broglie wavelength
much smaller than the average interparticle separation. C
sequently, the logarithm’s argument is less than one, and
chemical potential itself is negative. Can such a nega
value be consistent with the characterization of the chem
potential as measuring the tendency of particles to diffu
Yes, because what matters for diffusion is howm changes
from one spatial location to another. The spatial gradient~if
any! is what determines diffusion, not the size or sign ofm at
any single point.

C. Photons

Photons are bosons, but they are not conserved in num
Even in a closed system at thermal equilibrium, such as a
kitchen oven, their number fluctuates in time. There is
specific numberN of photons, although—when the temper
ture and volume of a cavity have been given—one can c
pute an estimated~or mean! number of photonŝN&.

There are several ways to establish that the chemical
tential for photons is zero~though I find none of them to be
entirely satisfactory!. The most straightforward route is t
compare the Planck spectral distribution with the Bos
428 Am. J. Phys., Vol. 69, No. 4, April 2001
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Einstein distribution, computed for conserved bosons. T
distributions match up if one sets the chemical potentia
the latter to zero.

One can also use a version of Eq.~20!, replacingN by ^N&.
Everything about a~spatially uniform! photon gas in therma
equilibrium is known if one knows the temperature and v
ume. Specifically, the entropy can be written in terms oT
and V, and soT can be expressed in terms ofS and V.
Therefore, the energyE ~usually considered a function ofT
and V) can be expressed in terms ofS and V. Then any
derivative ofE at constantS andV must be zero.

For a third method, one can examine the annihilation of
electron and a positron or their creation. In thermal equil
rium, the reaction should follow the pattern set by chemi
reactions:

melectron1mpositron52mphoton ~24!

for the two-photon process. Provided the temperature,
ume, and net electrical charge have been specified, one
construct the probability thatN2 electrons,N1 positrons,
and any number of photons are present. The construc
follows the route outlined in Sec. III forNl andNu ~provided
one treats the electrons and positrons as uncharged s
classical gases!. The ensuing probability is a function o
N2 , N1 , T, andV. Looking for the maximum in its loga-
rithm, one finds the criterion

melectron1mpositron50. ~25!

Comparing Eqs.~24! and ~25!, one infers that the chemica
potential for photons is zero.

Next, note that the spin-singlet state of positronium m
decay into two or four or any higher even number of ph
tons. Simultaneous thermal equilibrium with respect to all
these processes@in the fashion illustrated in Eq.~24! for
two-photon decay# is possible only ifmphoton equals zero.
Here one sees clearly that the absence of a conservation
for photons leads to a zero value for the chemical poten

Finally, consider the conduction electrons in the me
wall of a hot oven. The electrons interact among themsel
and with the radiation field~as well as with the metallic ions
which are ignored here!. One electron can scatter off anoth
and, in the process, emit a photon into the oven. The reac
is e1e8→e91e-1g. The primes indicate different elec
tronic states.~The reversed process, in which a photon
absorbed, is also possible.! In thermal equilibrium, an analo
gous equation should hold among chemical potentials: 2me

52me1mphoton. From this equality, one infers that th
chemical potential for thermal radiation is zero.

If the chemical potential for photons is everywhere zero
there any meaning to the notion of ‘‘diffusion of photons’
Yes, a spatial gradient in the temperature field determines
flow of radiant energy and hence the ‘‘diffusion of photons

G. Cook and R. H. Dickerson19 provide additional and
alternative qualitative computations of the chemical pot
tial.

Now the paper turns—for illustration—to two application
of the chemical potential. The first—depression of the me
ing point—was the subject of a Question20 and four
Answers21 in the Journal’s Question and Answer section
1997. The second application—batteries—seems to be
duringly fascinating for most physicists.
428Ralph Baierlein
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VII. DEPRESSION OF THE MELTING POINT

Consider liquid water and ice in equilibrium atT5273 K
and atmospheric pressure. If alcohol or table salt is adde
the liquid water and if the pressure is maintained at o
atmosphere, a new equilibrium will be established at a low
temperature. Thus, when ice is in contact with the soluti
its melting point is depressed. The chemical potential p
vides a succinct derivation of the effect, as follows.

For the sake of generality, replace the term ‘‘ice’’ b
‘‘solid’’ and the term ‘‘liquid water’’ by ‘‘solvent.’’ The
‘‘solvent’’ here is the liquid form of the solid but may con
tain a solute~such as alcohol or salt!.

The solvent’s chemical potential depends on the temp
ture, the external pressure, and the ratioh of number densi-
ties ~or concentrations!, solute to solvent:

h[
nsolute

nsolvent
. ~26!

In the absence of solute, the solvent and solid coexis
temperatureT0 and pressureP0 , and so their chemical po
tentials are equal then.

After the solute has been added, the new equilibrium
curs at temperatureT01DT such that

msolvent~T01DT,P0 ,h!5msolid~T01DT,P0!. ~27!

Expand the left-hand side about the arguments (T0 ,P0,0)
and the right-hand side about (T0 ,P0). To evaluate the par
tial derivatives with respect toT, one may differentiate Eq
~22! with respect toT, interchange the order of differentia
tion on the right-hand side, and note that (]G/]T)P,N52S
52Ns(T,P), where s denotes the entropy per molecul
@Alternatively, one may use the Gibbs–Duhem relation22 for
a single species~because the derivatives are evaluated in
pure phases!.# The first-order terms in the expansion of E
~27! yield the relation

2ssolventDT1
]msolvent

]h
h52ssolidDT. ~28!

The remaining derivative is to be evaluated at zero so
concentration. Solve forDT:

DT5
1

ssolvent2ssolid
3

]msolvent

]h
h. ~29!

Both a theoretical model, outlined in Appendix A, an
experimental evidence from osmosis indicate t
]msolvent/]h is negative. A liquid usually has an entropy p
particle higher than that of the corresponding solid pha
and so the difference in entropies is usually positive. T
implication then is adepressionof the melting point that is
linear in the solute concentration~when a first-order expan
sion suffices!.

Qualitative reasons for a depression are given in Ref.
Exceptions to the positive difference of entropies are
scribed in Ref. 23. The chemical potential provides a sim
analytic approach to related phenomena: elevation of
boiling point, osmotic pressure, and various solubil
problems.24
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VIII. BATTERIES

The topic of batteries immediately prompts two questio

~1! Why does a potential difference arise?
~2! How large is the potential difference between the term

nals?

This section addresses the questions in order.
For a prelude, let me say the following. In discussing t

first question, we will see how the spatial uniformity of th
chemical potential helps one to infer and describe the spa
behavior of ionic concentrations and the electric potential
addressing the second question, we will relate the poten
difference to the~intrinsic! chemical potentials and stoichio
metric coefficients of the particles whose reactions power
battery. An overall difference in binding energy will emerg
as what sets the fundamental size of the potential differen

A. Why a potential difference?

To have an example before us, take a single cell of
automotive lead-acid battery. The chemical reactions are
following.

At the pure lead terminal,

Pb1HSO4
2→PbSO41H112e2. ~30!

At the terminal with lead and lead oxide,

PbO21HSO4
213H112e2→PbSO412H2O. ~31!

Imagine commencing with two neutral electrodes and
electrolyte; then pour in a well-stirred mixture of sulfur
acid and water~and keep the cell on open circuit!.

At the pure lead terminal, reaction~30! depletes the
nearby solution of HSO4

2 ions and generates H1 ions, as
illustrated in Figs. 3~b! and 3~d!. The two electrons contrib-

Fig. 3. For the electrolyte in a lead-acid cell, qualitative graphs of~a! the
electric potentialw(x), ~b! the number densitynH1 of H1 ions, ~c! the
intrinsic chemical potential for those ions, and~d! the number density of
HSO4

2 ions. The abscissax runs from the pure lead electrode to the termin
with lead and lead oxide. Potentials—both electric and chemical—usu
contain an arbitrary additive constant. Implicitly, those constants have b
chosen so that graphs~a! and ~c! lie conveniently above the origin.
429Ralph Baierlein
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uted to the terminal make it negative. In the context of
figure, the negative charges on the terminal and the net p
tive charge density in the nearby electrolyte produce
leftward-directed electric field in the electrolyte. By them
selves, the concentration gradients in the ion densities wo
produce diffusion that restores a uniform density. The el
tric forces oppose this tendency. Specifically, acting on
HSO4

2 ions, the field produces a rightward force and preve
the concentration gradient from eliminating the depletio
Acting on the H1 ions, the field produces a leftward forc
and sustains the excess of H1 ions.

The situation is an electrical analog of air molecules in
Earth’s gravitational field: the effects of a force field and
concentration gradient cancel each other.

Over an interval of a few atomic diameters, the electrol
has a positive charge density. Beyond that, the electrolyt
essentially neutral~when averaged over a volume that co
tains a hundred molecules or so!. The combination of a posi
tively charged interval and a negative surface charge on
electrode provides a region of leftward-directed electric fi
and a positive step in electric potential~as one’s focus shifts
from left to right!. Figure 3~a! illustrates the step.

At the lead oxide electrode, reaction~31! depletes the
nearby solution of H1 ions @as illustrated in Fig. 3~b!# and
simultaneously makes the terminal positive. The posit
charges on the terminal produce a leftward-directed elec
field. The electric force on the remaining H1 ions prevents
diffusion from eliminating the depletion.

The reaction depletes HSO4
2 ions also, but the 3-to-1 ratio

in the reaction implies that the effect of the H1 ions domi-
nates. In fact, the electric force on the remaining HSO4

2 ions
pulls enough of those ions into the region to produce a lo
excess of HSO4

2 ions, as illustrated in Fig. 3~d!. ~Later, a
self-consistency argument will support this claim.! The elec-
trolyte acquires a net negative charge density over an inte
of a few atomic diameters. The combination of a negativ
charged electrolyte and the positive surface charge on
electrode produces a leftward-directed electric field and
other positive step in electric potential, as shown in Fig. 3~a!.

In summary, a chemical reaction at an electrode is a s
or source of ions. Thus the reaction generates a concentr
gradient and a separation of charges. The latter produce
electric field. In turn, the electric field opposes the tende
of diffusion to eliminate the concentration gradient and
charge separation. The electric field is preserved and, ac
over an interval, produces a step in electric potential.

For each ion, its chemical potential may be decompo
into two terms:~1! the chemical potential that the ion wou
have in the absence of an electric potential and~2! the elec-
trical potential energy of the ion due to the macroscopic e
tric potentialw(x). The first term was called by Gibbs th
‘‘intrinsic potential,’’ and it is now called theintrinsic or
internal chemical potential. The subscript ‘‘int’’ may be read
in either way. Thus an ion’s chemical potentialm has the
form

m5m int1qionw, ~32!

whereqion is the ion’s charge.
The intrinsic chemical potential is an increasing functi

of the ion’s concentration~provided the physical system i
stable!.25 Thus Fig. 3~c! displays a graph form int, H1 that
shows the same trends that the number densitynH1 does.
430 Am. J. Phys., Vol. 69, No. 4, April 2001
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At thermal equilibrium the chemical potential for eac
species is uniform in space~in each connected region t
which diffusion can carry the particles!. For a positively
charged ion, the concentration will decrease where the e
tric potential increases; a comparison of graphs~a! and ~b!
illustrates this principle. For a negatively charged ion, t
opposite behavior occurs. Thus consistency among the
graphs in Fig. 3 requires the concentration variations
HSO4

2 ions to be opposite those for H1 ions.
The gradient of Eq.~32! lends itself to a simple interpre

tation if the ions exist in adilute aqueous solution. Then th
intrinsic chemical potential for a specific ion depends s
tially on merely the concentrationn(x) of that ion. To say
that the chemical potential is uniform in space is to say t
the gradient of the chemical potential is zero. Thus Eq.~32!
implies

S ]m int

]n D dn

dx
2qionEx50, ~33!

whereEx denotes thex-component of the electric field. Th
electric forceqionEx annuls the diffusive tendency of a con
centration gradient,dn/dx.

B. How large is the potential difference?

To determine the potential difference when the cell h
come to equilibrium on open circuit, we start with a bas
principle: at chemical equilibrium, the Gibbs free energy
tains a minimum~in the context of fixed temperature an
external pressure!. Taking into accountboth reactions~30!
and ~31!, we have

DG5(
i

bim i50. ~34!

The sum of stoichiometric coefficients times chemical pot
tials must yield zero. Note that electrons appeartwice in this
sum, once when transferredfrom an electrode and agai
when transferredto the other electrode.

Each chemical potential has the two-term structure d
played in Eq.~32!. Some care is required in evaluating th
term containing the electric potential. Indeed, the ions a
electrons need separate treatment. We will find that the io
electric potential terms inDG cancel out and that the elec
tronic contribution introduces the potential difference.

For the ions, we may use the values of the chemical
tentials at the center of the electrolyte. Although the react
uses up ions at the electrodes, those ions are repleni
from the plateau region, and that replenishment is part of
step from one equilibrium context to another.

An alternative way to justify using the central location
to note that the chemical potential for each ion is unifo
throughout the electrolyte. Thus every location gives
same numerical value, but the center—because it typifies
plateau region—will ensure that, later, the ionic intrins
chemical potentials are to be evaluated in the bulk region
the electrolyte.

The number of ‘‘conduction’’ electrons is the same in t
reactants and the products. The electrons are merely on
ferent electrodes. Consequently, the net charge on the io
the same for the reactants and the products. When those
charges are multiplied by the electric potential at the cen
and then subtracted, the contributions cancel out. All that
430Ralph Baierlein
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ions and neutrals contribute to the sum in Eq.~34! is their
intrinsic chemical potentials, suitably weighted.

Quite the opposite is true for the conduction electro
Two electrons are removed from the metallic lead at
positive electrode, and two are transferred to the lead at
negative electrode. The contribution of their electric pote
tial terms to Eq.~34! is

2~22e!wpos1~22e!wneg52~22e!Dw, ~35!

where Dw[wpos2wneg is the positive potential differenc
between the terminals and wheree denotes the magnitude o
the electronic charge. The electron’s intrinsic chemical
tentials, however, have the same numerical value in the
pieces of lead,26 and so they cancel out in Eq.~34!.

The upshot is that the minimum property forG implies

DG5(
iÞel

bim int,i2~22e!Dw50. ~36!

The summation includes the ions and neutrals but exclu
the electrons.

Solving for the potential difference, one finds

Dw5
21

qch
3 (

ions and
neutrals

bim int,i , ~37!

whereqch denotes the magnitude of the electrons’ charg
For the ions, the intrinsic chemical potentials are to be eva
ated in the bulk region of the electrolyte.

The sum obviously depends on the cell’s composition.
the species in the electrolyte, eachm int can be expanded to
display a dependence on concentrations. Thus compos
and concentrations determine the potential difference.
significantly more can be said, as follows.

For an ion in an aqueous solution, the chemical potentia
difficult to calculate explicitly. If the electrolyte were a dilut
gas, computation would be much simpler. The intrin
chemical potential for each ion or neutral molecule wou
contain, as a term, the particle’s ground-state energy«g.s.
~reckoned relative to the energy of some standard state,
as the energy of free neutral atoms and free electrons at
at infinite separation!.27 That is to say,m int5«g.s.1¯ . Dif-
ferences in binding energywould dominate the sum in Eq
~37!, would set the fundamental size of the open-circuit p
tential difference, and would provide the primary ener
source for a current if the circuit were closed. Qualitative
the same situation prevails in an aqueous solution.28

Appendix B describes a more common route to the re
in Eq. ~37! and reconciles the two different values forDG.
Dana Roberts29 and Wayne Saslow30 provide complementary
treatments of batteries. A chemist’s view of a batte
couched in language that a physicist can penetrate, is g
by Jerry Goodisman.31

Having seen—in two applications—how the chemical p
tential is used, we can turn to a sketch of how it arose
was named.

IX. SOME HISTORY

J. Willard Gibbs introduced the chemical potential in h
great paper, ‘‘On the Equilibrium of Heterogeneous Su
stances,’’ published in two parts, in 1876 and 1878. In th
days, Gibbs was doing thermodynamics, not statistical
chanics, and so he differentiated the system’s energy w
431 Am. J. Phys., Vol. 69, No. 4, April 2001
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respect to the macroscopic mass~denotedmi by him! of the
substance denoted by the subscripti. Entropy and volume
were to be held constant. Thus Gibbs introduced a ma
scopic version of Eq.~20!. He had denoted the system’s e
ergy and entropy by the lower case Greek letters« and h,
respectively; so, presumably, he chose the letterm to provide
a mnemonic for a derivative with respect to mass.

Early in the paper, Gibbs called his derivative merely t
‘‘potential.’’ 32 Later, he found it necessary to distinguish h
derivative from the electric potential and gravitational pote
tial. He introduced the term ‘‘intrinsic potential’’ for a de
rivative that is ‘‘entirely determined at any point in a ma
by the nature and state of the mass about that point.’’33 In
short, the intrinsic potential is a local quantity, dependent
the local mass~or number! density, say, but not on field
created by distant charges or masses. For example, G
would have called the second term on the right-hand side
Eq. ~9! the intrinsic potential for the atoms in the upper vo
ume.

Nowhere in his major paper does Gibbs use the te
‘‘chemical potential.’’ That coinage seems to be have be
introduced by Wilder Dwight Bancroft.34 A Ph.D. student of
Wilhelm Ostwald, Bancroft was a physical chemist at Co
nell and the founder of theJournal of Physical Chemistry~in
1896!. Yale’s Beinecke Library preserves five letters fro
Bancroft to Gibbs,35 dated 1898–1899. In the earliest lette
Bancroft adheres to Gibbs’s usage. In his second letter, d
18 March 1899, however, Bancroft says he is trying to fi
time to write a book on electrochemistry and uses the phr
‘‘the chemical potentialm.’’ He employs the phrase noncha
lantly, as though it were a familiar or natural phrase. Mo
likely, Bancroft found a need to distinguish between t
electric potential and Gibbs’s~intrinsic! potential. The term
‘‘chemical potential’’ for the latter would make the distinc
tion clear.~Altogether, Bancroft uses the new term again
two more of the later letters.!

The fourth letter, dated 4 June 1899, has some wonde
lines. Bancroft mentions that ‘‘it has taken me seven ye
hard work to find out how your equation should be applied
actual cases’’ and comments, ‘‘The chemical potential is s
a mere phrase to everyone although Ostwald uses it wi
certain specious glibness.’’ Then he launches into his per
tion:

If we can once get used to writing and thinking
in terms of the chemical potential for the com-
paratively simple case of electromotive forces, it
will not be so difficult to take the next step and to
think in terms of the chemical potentials when
we are dealing with systems which cannot be
transposed to form a voltaic cell. So far as I can
see at present, our only hope of converting or-
ganic chemistry, for instance, into a rational sci-
ence lies in the development and application of
the idea of the chemical potential.

Widespread understanding of how to use the chemical po
tial was slow in coming.

In a reply to Bancroft, Gibbs acceded to the coinage, w
ing about the need ‘‘to evaluate the~intrinsic or chemical!
potentials involved’’ in a working theory of galvanic cells.36

Electrochemists remain true to Bancroft’s usage. In ref
ring to Eq.~32!, they would call the termm int the ‘‘chemical
potential’’ and would cite the entire right-hand side as t
‘‘electrochemical potential.’’37
431Ralph Baierlein
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Physicists sometimes split the right-hand side of Eq.~32!
into ‘‘internal’’ and ‘‘external’’ chemical potentials and de
note the sum as the ‘‘total’’ chemical potential.38

Most often, however, physicists accept whatever emer
when one forms the derivative indicated in Eqs.~6!, ~20!,
and ~22! and call the result the chemical potential. In th
paper, I adopted that usage.

Nonetheless, the splitting of the chemical potential in
various terms warrants further comment. Gibbs noted
the zeroes of energy and entropy are arbitrary; conseque
the chemical potential may be shifted arbitrarily in value
a term of the form39 (constant)2T3~another constant!. This
result is seen most easily by regarding the chemical pote
as a derivative of the Helmholtz free energy, as in Eq.~6!.

Today, the Third Law of Thermodynamics gives us
natural zero for entropy. The zero of energy, however, m
seem to remain arbitrary. So long as the number of parti
of speciesi remains constant in whatever process one c
siders, the zero for the energy of those particles rema
irrelevant. If, however, particles of speciesi are created or
annihilated, then one must include the rest energy,mic

2,
wheremi denotes the rest mass, in the explicit expression
the chemical potential. The rest energy term is absolu
essential in a description of the early universe and m
other aspects of high-temperature astrophysics.40 In short,
special relativity theory provides a natural zero for the e
ergy of ~free! particles.

Now this section returns to history. James Clerk Maxw
was fascinated by Thomas Andrews’ experiments on car
dioxide: the coexistence of liquid and vapor, the critic
point, trajectories in the pressure-temperature plane,
mixtures of CO2 with other gases. Moreover, Maxwell ha
been impressed by the geometric methods that Gibbs
lined in his first two papers on thermodynamics. In this co
text, Maxwell developed—independently of Gibbs—his ow
version of the chemical potential and some associated r
tionships. When Gibbs’s comprehensive paper appea
Maxwell dropped his own formalism and enthusiastica
recommended Gibbs’s methods.41

Speaking to a conference of British chemists in 18
Maxwell distinguished between what we would today c
‘‘extensive’’ and ‘‘intensive’’ thermodynamic properties
The former scale with the size of the system. The latter
Maxwell’s words, ‘‘denote the intensity of certain physic
properties of the substance.’’ Then Maxwell went on, e
plaining that ‘‘the pressure is the intensity of the tendency
the body to expand, the temperature is the intensity of
tendency to part with heat; and the@chemical# potential of
any component is the intensity with which it tends to exp
that substance from its mass.’’42 The idea that the chemica
potential measures the tendency of particles to diffuse is
deed an old one.

Maxwell drew an analogy between temperature and
chemical potential. The parallel was noted already near
end of Sec. III, and it is developed further in Appendix
which explores the question, why does this paper offer th
characterizations of the chemical potential, rather than ju
single comprehensive characterization?
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APPENDIX A: HOW THE SOLVENT’S CHEMICAL
POTENTIAL VARIES

This appendix focuses on howmsolvent varies with the
~relative! concentration of solute, denotedh. A verbal argu-
ment comes first; then a derivation with equations will su
port it.

As a prelude, however, let us note that a liquid is larg
incompressible. To a good approximation, its volume is
termined by the number of molecules and the temperat
The volume need not be considered an external param
~unlike the situation with a gas!. I will adopt this ‘‘incom-
pressible’’ approximation here.

To begin the verbal argument, recall that one may think
msolventas the change inF total, the Helmholtz free energy fo
the system of solvent and solute, when one solvent mole
is added to the liquid~at constant temperature and consta
number of solute molecules!.

Addition of a solvent molecule increases the volume of
liquid. Thussolutemolecules have more space in which
move. Their entropy increases, and soF total undergoes a
supplemental change, which is a decrease. Therefo
msolvent(T,P,h) is less thanmsolvent(T,P,0).

The supplemental decrease scales approximately line
with Nsolute ~becauseSsolute scales approximately linearly
with Nsolute when the solute concentration is relative
small!. Consequently,]msolvent/]h is negative and approxi
mately constant~for small h!.

A simple theoretical model enables one to confirm t
line of reasoning. To construct the partition function for t
solution, modify the forms in Eqs.~2! and ~8! to read as
follows:

Z~T,N1 ,N2!5
~N1y11N2y2!N11N2

l th,1
3N1N1! 3l th,2

3N2N2!

3exp@~N1«11N2«2!/kT#. ~A1!

The subscripts 1 and 2 refer to solvent and solute, resp
tively. Because a liquid is largely incompressible and det
mines its own volume, one may replace a container volu
V by N1y11N2y2 , where the constants$y1 ,y2% denote vol-
umes of molecular size. An attractive force~of short range!
holds together the molecules of a liquid and establishe
barrier to escape. Model the effect of that force by a poten
well of depth2«, saying that a molecule in the liquid ha
potential energy2« relative to a molecule in the vapo
phase.

In short, the model treats the liquid as a mixture of tw
ideal gases in a volume determined by the molecules th
selves~as they jostle about in virtually constant contact w
each other!. The energy« provides the dominant contributio
to the liquid’s latent heat of vaporization.

The solvent’s chemical potential now follows by differe
tiation as

msolvent52«11kT ln S l th,1
3

ey1
D 2kTh1O~h2!. ~A2!
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As expected,msolvent decreases approximately linearly wi
the ~relative! concentration of solute. Moreover, if one kee
track of where terms originate, one finds that the term2kTh
arises from the solute’s entropy.

Note also that the term linear inh is independentof the
ratio y2 /y1 . The terms of higher order inh do depend on
y2 /y1 . The distinction should be borne in mind if one as
whether purported qualitative reasons for the depressio
the melting point are actually valid.

APPENDIX B: BATTERIES BY AN ALTERNATIVE
ROUTE

The potential difference across a battery’s terminals is
ten calculated by assessing the electrical work done when
chemical reaction proceeds by one step. This appendix
lines that alternative route and reconciles it with the ro
presented in the main text.

To determine the potential difference, we start with ene
conservation in the form

TDS5DE1PDV1wel , ~B1!

wherewel denotes the~external! electrical work done by the
system. In this alternative route, ‘‘the system’’ consists
the ions and neutralsbut not the conduction electronsin the
terminals.

In the context of fixed temperature and pressure, Eq.~B1!
may be rearranged as

2D~E2TS1PV![2DG5wel . ~B2!

The electrical work equals the energy that would be requ
to transport the electrons literally across the potential diff
ence, and so Eq.~B2! becomes

2DG5qchDw, ~B3!

where~as before! qch denotes the magnitude of the electron
charges and where the potential differenceDw is positive.

The change inG is given by

DG5 (
ions and
neutrals

bim i , ~B4!

the sum of stoichiometric coefficients times chemical pot
tials. For the ions, we may use the values of the chem
potentials at the cell’s center.~Justification for this step wa
given in the main text.! Because the reaction preserves el
tric charge, that is, because the products have the sam
charge as do the reactants, the value of the electric pote
on the plateau,w~0!, cancels out in the sum. All that remain
is the weighted sum ofintrinsic chemical potentials for ions
and neutrals.

Upon combining these observations with Eqs.~B3! and
~B4!, we find the relationship that determines the poten
difference:

Dw5
21

qch
3 (

ions and
neutrals

bim int,i . ~B5!

For the ions, the intrinsic chemical potentials are to be eva
ated in the bulk electrolyte.

The result forDw is, of course, the same here as in t
main text. The two routes differ in what they take to be ‘‘th
system,’’ and so their intermediate steps necessarily di
also. The derivation in the main text takes a comprehen
433 Am. J. Phys., Vol. 69, No. 4, April 2001
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view of the cell and sees it in chemical equilibrium~when on
open circuit!. Relations internal to the system determine t
electric potential difference. In this appendix, a portion of t
cell ~taken to be the thermodynamic system! does work on
another portion~namely, the conduction electrons!.

APPENDIX C: WHY SO MANY?

This appendix addresses two questions.
~A! Why does this paper offer three characterizations

the chemical potential, rather than just a single compreh
sive characterization?

~B! Why does the chemical potential have so ma
equivalent expressions, which seem to make it exception

Response to Question A. Rather than immediately confron
the chemical potential, let us consider temperature and
how many characterizations it requires. One may start w
either a common-sense understanding of~absolute! tempera-
ture or the general expression 1/T5(]S/]E)N,V .

In characterizing temperature or listing its ‘‘meanings,’’
would start with the statement

~1! Tendency of energy to diffuse. As a function of posi-
tion, temperature measures the tendency of energy to dif
~by thermal conduction and by radiation!.
But I could not stop there. I would have to add the statem

~2! Characteristic energy. Temperature provides a chara
teristic energy:kT.

To be sure, I would have to qualify the second stateme
Only if classical physics and the equipartition theorem ap
does kT give the energy per particle or per mode or p
‘‘degree of freedom’’~within factors of 1

2 or 3
2 or so!. But

even for a degenerate quantum system like the conduc
electrons in a metal,kT provides a characteristic energy th
one compares with the Fermi energy«F .

Thus temperature has at least two essential characte
tions.

If only one species of particle is present, then the char
terizations of the chemical potential can be reduced to
items: ~1! measures the tendency of particles to diffuse a
~2! provides a characteristic energy. So one could see
chemical potential as no more complicated than temperat
and both require at least two characterizations.

But, of course, the chemical potential really comes into
own when more than one species of particle is present
reactions are possible. Then, it seems to me, I am stuck
needing to assign three characterizations.

Response to Question B. Energy, entropy, Helmholtz free
energy, Gibbs free energy, and enthalpy commonly appea
undergraduate thermal physics. Each of these functions is
optimal function to use in some set of physical circum
stances. In each case, one may contemplate adding a pa
to the system, and so the chemical potential can be expre
as a derivative of each of the five functions.

Given the same five functions, in how many straightfo
ward ways can one express temperature as a deriva
Three: as the derivative of entropy with respect to ener
and as the derivatives of energy and enthalpy with respec
entropy. The two free energies already have temperature
natural independent variable, so there is no straightforw
way to express temperature as a derivative.

We tend, however, to view the expression 1T
5(]S/]E)N,V and its reciprocal as a single relationship, n
as two distinct relationships. Moreover, expressing tempe
433Ralph Baierlein
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ture in terms of an enthalpy derivative lies far outside
typical physicist’s working sphere.

All in all, both the chemical potential and temperatu
have several equivalent expressions. In undergraduate p
ics, the chemical potential has two more than tempera
does, and those of temperature tend to be reduced to a si
ton in practice. But—as far as the number of equivalent
pressions goes—the chemical potential isnot exceptional in
any qualitative fashion.
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