
List of exercises #3 - 7600037

1. Dirac-delta perturbation to a particle in a 1D box. (Cohen-Tannoudji, Chap XI, ex. 1)
A particle of mass m is placed in an infinite one-dimensional well of width a: V (x) = 0 for 0 < x < a, and
V (x) = ∞ everywhere else. It is subject to a perturbation W (x) = εaδ (x − a/2), where ε is a real constant
with the dimensions of an energy.

(a) Calculate, to first order in ε, the corresponding energy shifts.
(b) Actually, the problem is exactly soluble. Setting ℏk =

√
2mE, show that the possible energies are given

by one of the two equations sin (ka/2) = 0 or tan (ka/2) = −ℏ2k/maε. Discuss the results obtained with
respect to the sign and magnitude of ε. In the limit ε → 0, show that one obtains the results of the
preceding question.

2. Step-potential perturbation to a particle in a 2D box. (Cohen-Tannoudji, Chap XI, ex. 2)
Consider a particle of mass m in an infinite 2D potential well of width a: V (x, y) = 0 if 0 < x < a and 0 < y < a,
and V (x, y) = ∞ everywhere else. This particle is also subject to a perturbation W (x, y) = ε if 0 < 2x < a and
0 < 2y < a, and W (x, y) = 0 everywhere else, where ε is a real constant with dimension of energy.

(a) Calculate, to first order in ε, the perturbed energy of the ground state.
(b) Same question for the first excited state (which is degenerate). Give the corresponding wave functions to

zeroth order in ε.

3. Anysotropic and rotated 2D Harmonic Oscillator. (Cohen-Tannoudji, Chap XI, ex. 3)
Consider the 2D isotropic Harmonic Oscillator whose Hamiltonian is H0 = P 2

2m + 1
2 mω2R2 perturbed by W =

λ1W1 + λ2W2 where λ1,2 are dimensionless real constants, and W1 = mω2XY and W2 = ℏω
(

(Lz/ℏ)2 − 2
)

,
where Lz = XPy − Y Px is the polar component of the orbital angular momentum of the particle.
In the following, consider only the corrections to first order for the energies and to zeroth order for the state
vectors.

(a) Indicate without calculations the eigenvalues of H0, their degrees of degeneracy and the associated eigen-
vectors.
In what follows, consider only the second excited state of H0, of energy 3ℏω and which is
three-fold degenerate.

(b) Calculate the matrices representing W1,2.
(c) Assume λ2 = 0 and λ1 ≪ 1. Calculate, using perturbation theory, the effect of λ1W1, and compare the

results with the limited expansion of the exact solution.
(d) Assume λ2 ≪ λ1 ≪ 1. Calculate, using perturbation theory, the effect of λ2W2.
(e) Assume λ1 = 0 and λ2 ≪ 1. Calculate, using perturbation theory, the effect of λ2W2, and compare the

results with the limited expansion of the exact solution.
(f) Finally, assume that λ1 ≪ λ2 ≪ 1. Calculate, using perturbation theory, the effect of λ1W1.

4. Zeeman effect on an easy-axis and easy-plane spin. (Cohen-Tannoudji, Chap XI, ex. 5)
Consider a system of total angular momentum equal to ℏ, i.e., ℓ = 1. The corresponding kets are {|m⟩}, with
m = −1, 0, 1. The unperturbed system Hamiltonian is H0 = aJz + bJ2

z /ℏ, where a and b are two positive
constants, which have the dimensions of an angular frequency.

(a) What are the energy levels of the system? For what value of the ratio b/a is there degeneracy?
(b) A static field B = B (cos ϕ sin θ, sin ϕ sin θ, cos θ) is applied. The corresponding perturbation to H0 is

W = −gB · J = ωB̂ · J, where g is the gyromagnetic ratio, assumed to be negative, and ω = −gB is the
corresponding Larmor angular frequency. Write the matrix which represents W in the basis of the three
eigenstates of H0.

(c) Assume that b = a ≫ ω and that B = Bx̂. Calculate the energies and eigenstates of the system, to first
order in ω for the energies and to zeroth order for the eigenstates.

(d) Assume that b = 2a ≫ ω (but the direction of B is arbitrary). What is the expansion of the ground state
of H0 + W to first order in ω?
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(e) Calculate the mean value ⟨M⟩ of the magnetic moment M = gJ of the system in that ground state.
Are ⟨M⟩ and B parallel? Show that one can write ⟨Mi⟩ =

∑
j χijBj , with i, j = x, y, z. Calculate the

coefficients χi,j (the components of the susceptibility tensor).

5. Anharmonic oscillator.
Consider a 1D Harmonic Oscillator perturbed by a quartic term, i.e., H0 = 1

2m p2 + 1
2 mω2x2 and V = λℏω

(
x
a

)4,
where a =

√
ℏ

mω and 0 < λ ≪ 1 is a small constant. Treating V as a perturbation to H0, obtain the energy
corrections up to second order and the state corrections up to first order.

6. The K-electron energy shift in a heavy nucleus.
The “radius” of a proton is roughly rp = 10−15 m. The “orbit” of the n = 1 state in Hydrogen is roughly
a0 = ℏ2

me2 ≈ 0.5 Å ∼ 105rp. Hence, it is an excellent approximation to assume a point proton.
In a heavy nucleus atoms, however, (say, Z ∼ 80), the electron orbit diminishes a0 → a = a0/Z ∼ 103rp and the
nucleus radius R ∼ 10rp, so that the assumption of a point-like nucleus is no longer valid. There is therefore a
shift in the n = 1 energy level due to the finite nuclear size, which can be estimated by first-order perturbation
theory.
For the purposes of this calculation, assume that a single electron interacts with a nuclear charge Q = Ze which
is uniformly distributed throughout a structureless sphere of radius R. Also, assume that the nuclear mass is
much greater than the electron’s.

(a) Use classical electrostatics to determine the perturbation V (Z, R, r) where r is the electron’s position
coordinate.

(b) The integral yielding the first-order correction to the nth energy is trivial to calculate if an approximation,
based on the facts that R ≈ 7rp and Z ≈ 80, is made. Find this approximation, show why it is valid, and
then use it to evaluate the energy correction. Does it depend on the total angular momentum (ℓ) or on its
z component (m)?

(c) Now set R = 7rp and Z = 81 and calculate the numerical values of the unperturbed energy and the
corresponding correction for n = 1. Discuss whether first-order perturbation theory is reliable for this
situation.

7. Develop the second-order time-independent perturbation theory when the degeneracy is not removed in the first
order.

8. The system Hamiltonian, in dimensionless units, is H = H0 + λV , where

H0 =

 1 0 0
0 1 0
0 0 2

 and V =

 0 0 1
0 0 1
1 1 0

 ,

with |λ| ≪ 1 being a constant.

(a) Compute the energy correction to all states up to the first nonvanishing order in perturbation theory and
compare with the exact result.

(b) Compute the corresponding eigenstates up to zeroth order in perturbation theory and compare with the
exact result.


