

Universidade de São Paulo Instituto de Física de São Carlos - IFSC

Berilo

SFI 5800 Espectroscopia Física Espectroscopia eletrônica: complexos de metais de transição

Agua marinha

Prof. Dr. José Pedro Donoso

Topázio

Espectroscopia Eletrônica

Espectros de complexos de metais de transição : transições d - d

Em um átomo livre, todos os cinco orbitais d são degenerados

Em um complexo de metal de transição, o sítio do átomo metálico não é esférico, e a degenerescência é quebrada: num complexo octaédrico, os cinco orbitais *d* do átomo metalico se desdobram em dois grupos, um com degenerescência tripla (t_{2g}) e outro com degenerescência dupla (e_g). Mesma coisa acontece nos complexos de simetria tetraédrica, apenas a ordem dos níveis t_{2g} e e_g se inverte.

As transições entre os níveis t_{2g} e e_g ocorre tipicamente na região vísivel do espectro e são responsáveis pelas cores caraterísticas dos metais de transição, certos minerais e as pedras preciosas

Espectro de absorção de complexos de metais de transição

Complex	UV 🛥 🖝 E	Blue→+Gr-	⊶Ү⊸≁Ҏ	ed ———	-⊮ I.R.		Color
[Co(CN)6]3-	400	500	600	700	800 0	m	colorless
[Со (NH ₃) ₆] ³⁺	\wedge	A					yellow red
[Cr(H20)6]3+	\square		A				purple
[ті(н ₂ 0) ₆] ³⁺		ſ	J				purple red
[Co(H ₂ O) ₆] ²⁺		\bigwedge				5	pink
[CoCI4]2-			1	2			blue
(Cu(NH ₃) ₄) ²⁺			5				blue
(Cu(H ₂ O) ₆) ²⁺					\wedge		pale blue
[Ni (H ₂ 0) ₆] ²⁺		A		Л		A	green = lue +yellow
[Mn(H ₂ O) ₆] ²			1				very pale pink
Á 300 nm 300 10 ³ cm 33	00 4000 0 400 3 25.0	5000 500 20.0	6000 600 16,7	7000 700 14.3	8000 800 12.5	900 900 11.1	0

Dweck & Campbell, Biologcal Spectroscopy

Complexos de metais de transição

Configuration	Ti	v	Cr	Mn	Fe	Co	Ni	Cu
3d ^{0h}	IV colorless	V	VI	VII				
3d ¹	ΠI^{c}	IV brown	V	VI				
$3d^2$	II brown	III violet	(IV)	(V)	(VI)			
$3d^3$		II green	III violet	IV				
$3d^4$		(1)	II colorless	III brown, green	(IV)	(V)		
3d ⁵				II pink	III brown	(IV)		
3d ⁶					II colorless	III red, yellow	(IV)	
$3d^7$						II blue	III	
$3d^8$						(1)	II yellow	(III)
$3d^9$								II brown
3 <i>d</i> ^{10<i>b</i>}								I colorless

Table 5-2 Valence States of the 3d Transition Elements and Colors of Their Anhydrous Chlorides^a

Nassau, The Physics and chemistry of color

Complexos de metais de transição

Ion	Configuration	Color in Soda– Lime–Silicate Glass	Additional Colors in Other Glasses
Ti ^{III}	$3d^1$	Violet-purple	
V^{IV}	$3d^1$		Blue
$\mathbf{V}^{\mathrm{III}}$	$3d^2$	Yellow-green	
$\mathrm{Cr}^{\mathrm{III}}$	$3d^3$	Green	Yellow-orange
Cr ^{II}	$3d^4$		Blue
Mn ^{III}	$3d^4$	Purple	
Mn^{II}	$3d^5$	Colorless	Yellow, brown
Fe ^{III}	$3d^5$	Pale yellow-green	Colorless
Fe ^{II}	$3d^6$	Blue green	Yellow, pink
Co ^{III}	$3d^6$		Yellow
Co ^{II}	$3d^7$	Intense violet-blue	Pink, red
Ni ^{II}	$3d^8$	Yellow, brown	Purple
Cu ^{II}	$3d^9$	Blue, green	_

Nassau, The Physics and chemistry of color

Complexos de Cr²⁺ e Cr³⁺

Anion	Divalent Cr ¹¹	Trivalent Cr ^{II}
Bromide	White	Olive green
Chloride	White	Violet ^a
Fluoride	Green	Green
Iodide	Gray	Black
Oxalate hydrate	Yellow	Red
Sulfate hydrate	Blue	Violet

Complexos de Co ³⁺	Complex	Color	Early name
	CoCl ₃ ·6NH ₃	Yellow	Luteo complex
	CoCl ₃ ·5NH ₃	Purple	Purpureo complex
	CoCl ₃ ·4NH ₃	Green	Praseo complex
	CoCl ₃ ·4NH ₃	Violet	Violeo complex

Nassau, The Physics and chemistry of color; Huheey, Keiter, Keiter: Inorganic chemistry

Complexos de metais de transição: íons 3dⁿ

GROUND STATES OF IONS WITH PARTIALLY FILLED *d*- OR *f*-SHELLS, AS CONSTRUCTED FROM HUND'S RULES^{*a*}

<i>d</i> -	shell $(l =$	2)							
n	$l_z = 2,$	1,	0,	-1,	-2	S	$L = \Sigma l_z $	J	SYMBOL
1	Ļ					1/2	2	3/2	$^{2}D_{3/2}$
2	Ļ	\downarrow				1	3	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \begin{vmatrix} I \\ I \end{vmatrix}$	${}^{3}F_{2}$
3	Ļ	\downarrow	\downarrow			3/2	3	$3/2 \int 3/2 $	$^{4}F_{3/2}$
4	Ļ	\downarrow	\downarrow	↓		2	2	0	${}^{5}D_{0}$
5	Ļ	\downarrow	\downarrow	\downarrow	\downarrow	5/2	0	5/2	$^{6}S_{5/2}$
6	ţţ.	↑	↑	1	ſ	2	2	4)	$^{5}D_{4}$
7	t↓	↓ ↑	Ť	1	Ť	3/2	3	9/2	$^{4}F_{9/2}$
8	↓†	↓↑	11	Ť	Ť	1	3	J = L + S	$^{3}F_{4}$
9	↓ ↓	J1	↓ ↑	↓†	↑	1/2	2	5/2	$^{2}D_{5/2}$
10	↓†	↓†	↓†	↓î	↓↑	0	0	0	$^{1}S_{0}^{3/2}$

Ashcroft – Mermin, Solid State Physics

Orbitais d

Huheey, Keiter, Keiter, Inorganic Chemistry

Distribuição da densidade eletrônica nos orbitais d

 d_{xy}

d_{x2-y2}

d_{z2}

Desdobramento dos níveis d num campo cristalino octaédrico

O campo octaédrico é produzido pelos seis ligantes •. Exemplo: $[Ti(H_2O)_6]^{3+}$

Huheey, Keiter, Keiter, Inorganic Chemistry

Desdobramento dos níveis d num campo cristalino octaédrico

A densidade de carga do orbital d_{x2-y2} se distribui ao longo dos eixos x e y, enquanto que as do orbital d_{xy} o faz ao longo das bisectrizes. As direções de max. densidade de carga nos d_{x2-y2} coincide com a direção dos ligantes, que estão carregados negativamente. Os eletrons do orbital d_{x2-y2} sofrem então uma repulsão maior pelos ligantes que os eletrons do orbital d_{xy} .

Desdobramento dos níveis d num campo cristalino octaédrico

O orbital d_{z2} possui uma densidade de carga concentrada ao longo do eixo *z*, interagindo fortemente com os ligantes mais próximos neste eixo. Este orbital esta degenerado com o orbital d_{x2-y2} . O resultado é:

1 – um conjunto de orbitais duplamente degenerados, formado pelos orbitais $d_{z2} e d_{x2-y2}$, com energia mais alta, simbolizado por E_g

2 – um outro conjunto de orbitais triplamente degenerado formado pelos orbitais d_{xy} , d_{xz} e d_{yz} , com energia mais baixa, simbolizado por T_{2g}

A separação entre $E_g \in T_{2g} \in \Delta$, *crystal field splitting energy*. Ele se define também como $\Delta \equiv 10$ Dq. Unidade: eV, cm⁻¹ ou kK. Os valores de Δ são da mesma ordem de grandeza que as energia das ligações químicas, 200 – 400 kJ/mol

Desdobramento dos níveis num campo octahédrico forte / fraco

Configuração eletrônica de (a) um íon *d*⁵ num campo octaédrico fraco e (b) um íon *d*⁶ num campo octaédrico forte

Huheey, Keiter, Keiter, Inorganic Chemistry

Desdobramento dos níveis d num campo cristalino tetraédrico

O campo tetraédrico é produzido pelos quatro ligantes • ou pelos ligantes •

Huheey, Keiter, Keiter, Inorganic Chemistry

Desdobramento dos níveis d

O desdobramento dos níveis $e e t_2$ num campo cristalino tetraédrico é intrinsicamente menor do que num campo octaédrico porque ele contém 2/3 menos de ligantes e eles tem um menor efeito direto sobre os orbitais *d*. O modelo de carga pontual prediz que o mesmo íon metálico, mesmos ligantes e mesmas distâncias metal – ligante:

$$\Delta_{tetr} = \frac{4}{9} \Delta_{oct}$$

Huheey, Keiter, Keiter, Inorganic Chemistry; Orgel, Intr. à Quimica dos Metais de Transição

Exemplo: Co²⁺ num campo cristalino tetraédrico e num campo octaédrico

O complexo de Co²⁺ octaédricamente coordenado Co(H₂O₆)²⁺, cor rosa (banda de absorção em 513 nm). O íon d⁷ está numa configuração de alto spin, estado fundamental ${}^{4}T_{2q}$. A transição observada é ${}^{4}T_{1q}(F) \rightarrow {}^{4}T_{1q}(P)$

O complexo tetraédricamente coordenado CoCl₄²⁻ é de cor azul (banda em 667 nm) O desdobramento dos níveis num campo cristalino tetraédrico menor do que num campo octaédrico.

Fig. 5-58. Partial energy level diagram for a d^7 ion in an octahedral ligand field. The dashed line is the position of Δ_0 for $Co(H_2O)_6^{2+}$. From F.A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, John Wiley & Sons, N.Y., 1972.

Harris & Bertolucci Symmetry and Spectroscopy

Espectro eletrônico do Ti³⁺ numa solução [Ti(H₂O)]⁶⁺

Huheey, Keiter, Keiter, Inorganic Chemistry Harris & Bertolucci, Symmetry and Spectroscopy Ti³⁺ : íon 3d¹ Ligantes: H₂O O íon Ti³⁺ esta num campo cristalino octaédrico

Espectro eletrônico do Ti³⁺ numa solução [Ti(H₂O)]⁶⁺

Huheey, Keiter, Keiter, Inorganic Chemistry Harris & Bertolucci, Symmetry and Spectroscopy Ti³⁺ : íon 3d¹. Termo fundamental: ²D (L = 2; m_L = 2, 1, 0, -1, -2)

O espectro mostra uma única banda de absorção no visível, a 5000 Å (20000 cm⁻¹ ou 20 kK) . A cor do complexo é púrpura devido a banda de absorção permitir que seja transmitida a maior parte da luz vermelha e parte da azul.

Esta banda resulta da transição: ${}^{2}T_{2g} \rightarrow {}^{2}E_{g} (\Delta = 243 \text{ kj/mol})$ A forma assimetrica da banda é explicada pelo teorema Jahn – Teller.

Teoria de Campo Cristalino (*Ligand field*)

Consideremos um íon paramagnético (carga positiva) colocado no centro de um sistema de coordenadas cartesianas e rodeado de cargas negativas. A contribuição à potencial das cargas em $\pm b$:

$$V_B = \frac{e}{\sqrt{\left(b^2 + r^2 \pm 2bz\right)}}$$

 $r^2 = x^2 + y^2 + z^2$

De forma semelhante se calcula o potencial das cargas em $\pm a$ Expandimos este potêncial em termos tipo *r/b*, *z/b*, etc:

$$V = e\left[\left(\frac{4}{a} + \frac{2}{b}\right) - \left(\frac{2r^2}{a^3} + \frac{r^2}{b^3}\right) + 3\left(\frac{x^2 + y^2}{a^3} + \frac{z^2}{b^3}\right) + \frac{3}{4}\left(\frac{2r^4}{a^5} + \frac{r^4}{b^5}\right) - \left(\frac{15}{2}\frac{r^2\left(x^2 + y^2\right)}{a^5} + \frac{r^2z^2}{b^5}\right) + 35\left(\frac{x^4 + y^4}{a^5} + \frac{z^4}{b^5}\right)\right]$$

re-escrevemos este potêncial como a soma de uma parte cúbica e outra axial:

$$V = V_{cub} + V_{axial} \qquad \qquad V_{cub} = \frac{35}{4} \left(\frac{e}{5} x^4 + y^4 + z^4 - \frac{3}{5} r^4 \right)$$

Teoria de Campo Cristalino (*Ligand field*)

Conhecendo o potencial *V* podemos calcular as energias eletrônicas. Antes, porém, é necessário transformar esses potenciais em operadores que atuem sobre autofunções tipo $|M_L, M_S >$. Estes são chamados *operadores equivalentes de Stevens* (Proc. Phys. Society A **65**, 209, 1952). Alguns deles são os seguintes:

$$\sum (3z^2 - r^2) = \alpha \langle r^2 \rangle \{ 3L_z^2 - L(L+1) \} \qquad \sum (x^4 - 6x^2y^2 + y^4) = \beta \langle r^4 \rangle \{ L_+^4 + L_-^4 \}$$

Com o potêncial *V* expressado em termos dos operadores L^2 , L_z , L_+ e L_- , podemos calcular as energias eletrônicas pois sabemos como operam estes operadores sobre $|M\rangle$

$$L^{2}|M\rangle = L(L+1)|M\rangle \qquad \qquad L_{z}|M\rangle = M|M\rangle$$

$$L_{\pm} | M \rangle = \sqrt{L(L+1) - M(M\pm 1)} | M \pm 1 \rangle$$

$$L_{+} \equiv L_{x} + iL_{y} \qquad \qquad L_{-} \equiv L_{x} - iL_{y}$$

Aplicação da Teoria de Campo Cristalino

Vamos calcular as energias eletrônicas para um íon d^1 num campo cúbico de simetria octaédrica: íon Ti³⁺ (3d¹): Termo fundamental: ²D (L = 2; M_L = 2, 1, 0, -1, -2) Hamiltoniano do campo cristalino cúbico:

$$H = eD\beta \langle r^4 \rangle \left\{ \frac{1}{20} \left(35L_z^4 - 30L(L+1)L_z^2 + 25L_z^2 - 6L(L+1) + 3L^2(L+1)^2 \right) + \frac{1}{8} \left(L_z^4 + L_z^4 \right) \right\}$$

Aplicamos o hamiltoniano sobre as autofunções |2>, |1>, |0>, |-1> e |-2>, resolvemos os autovalores do determinante secular para obter as energias dos cinco estados:

$$E_{1} = \frac{18}{5} eD\beta \langle r^{4} \rangle \qquad \qquad E_{2} = -\frac{12}{5} eD\beta \langle r^{4} \rangle \qquad \qquad E_{3} = \frac{18}{5} eD\beta \langle r^{4} \rangle$$

$$E_4 = -\frac{12}{5} eD\beta \langle r^4 \rangle \qquad \qquad E_5 = -\frac{12}{5} eD\beta \langle r^4 \rangle$$

obtivemos tres autovalores de valor -12/5 e dois de 18/5. Um campo cristalino cúbico de simetria octaédrica desdbra o estado D (L =2) num dupleto (E) e um tripleto (T)

A separação entre estes dois estados é:

$$\Delta = \left[\frac{18}{5} - \left(-\frac{12}{5}\right)\right] \frac{2}{63} eD\langle r^4 \rangle = 10Dq$$
$$q \equiv \frac{2e}{105} \langle r^4 \rangle \qquad \qquad \beta = \frac{2}{63} \quad \text{(fon d}^1\text{)}$$

Fig. 5-54. Visible absorption spectrum of Ti(H₂O)₆³⁺ From H. Hartman, Schläfer, and K.H. Hansen, Z. Anorg. Allg. Chem., 284, 153 (1956).

No espectro de absorção do Ti(H₂O)₆³⁺

 $\Delta = 20300 \text{ cm}^{-1} (2.5 \text{ eV})$ $Dq = 2030 \text{ cm}^{-1}$

Huheey, Keiter, Keiter, Inorganic Chemistry Harris & Bertolucci, Symmetry and Spectroscopy A assimetria observada no espectro de absorção do $Ti(H_2O)_6^{3+}$ é interpretado em termos do Teorema de Jahn – Teller: "qualquer molécula não linear num estado orbital degenerado, sofrerá uma distorção que diminuirá a energia da molécula e removerá a degenerescência do estado"

Harris & Bertolucci Symmetry and Spectroscopy O estado fundamental do complexo é T_{2g} De acordo ao Teorema, aparecerá uma distorção que reducirá a simetria do complexo para D_{4h} . O novo estado fundamental é B_{2g}

A transição $T_{2g} \rightarrow E_g$ do complexo O_h é substituida pelas transições em D_{4h} : ${}^{2}B_{2g} \rightarrow {}^{2}B_{1g}$ e ${}^{2}B_{2g} \rightarrow {}^{2}A_{1g}$ Estas transições se sobrepõem produzindo a banda assimétrica do espectro. Um transição, ${}^{2}B_{2g} \rightarrow {}^{2}E_{g}$ é esperada na região infravermelha do espectro. Nas transições eletrônicas devemos não apenas considerar o momento angular orbital mas também o spin. Transições proibidas por spin podem, as vezes, tornar-se permitidas devido a mistura de estados produzida pelo acoplamento spin – orbita:

$$H_{SO} = \lambda L \cdot S = \lambda [L_z S_z + L_y S_y + L_x S_x] = \lambda [L_z S_z + \frac{1}{2} (L_+ S_- + L_- S_+)]$$

Este hamiltoniano opera sobre as autofunções $|M_LM_S>$:

$$H_{SO} | M_L M_S \rangle = \lambda M_L M_S | M_L M_S \rangle + + \frac{\lambda_2}{\sqrt{L(L+1) - M_L(M_L+1)}} \sqrt{S(S+1) - M_S(M_S-1)} | M_L + 1, M_S - 1 \rangle + \frac{\lambda_2}{\sqrt{L(L+1) - M_L(M_L+1)}} \sqrt{S(S+1) - M_S(M_S-1)} | M_L - 1, M_S + 1 \rangle$$

Figura: desdobramento dos níveis de energia de um íon d⁶ (S = 2). Ion livre (⁵D); campo cristalino octaédrico, distorção tetragonal e acoplamento *S. O.*

Notação

Estados eletrônicos na notação de Mulliken e de Bethe

Degenerescência	1	1	2	3	3	2	2	4
Mulliken	A ₁	A_2	Е	$T_1(F)$	T ₂ (F)	E _{1/2}	E _{5/2}	G,U
Bethe	Γ_1	Γ_2	Γ_3	Γ_4	Γ_5	Γ_6	Γ_7	Γ_8

Fig. 5-60. Visible spectrum of $Mn(H_2O)_6^{2+}$. From C.K. Jorgensen, Acta Chem. Scand., 8, 1502 (1954).

Mn²⁺: íon $3d^5$, octaédricamente coordenado Estado fundamental : ${}^6A_{1g}$ Todas as transições são *spin proibidas* Parâmetro de campo cristalino: $\Delta = 8500 \text{ cm}^{-1}$

Figgis, Introduction to ligand fields

Espectro eletrônico do Mn(H₂O)₆²⁺

Figure A.50. Term diagram for $(d^5)Mn^{2+}$ for octahedral symmetry according to Orgel⁵⁰ (sextet and quartet terms

Espectro eletrônico do Mn(H₂O)₆²⁺

Band frequency	$\sim \epsilon$	~ f	Assignment
18,600 cm ⁻¹	0.013	1.2 × 10 ⁻⁷	${}^{4}T_{1g}(G) \leftarrow {}^{6}A_{1g}$
22,900	0.009	8×10^{-8}	${}^{4}T_{2g}(G) \leftarrow {}^{6}A_{1g}$
24,900	0.031	6×10^{-8}	${}^{4}E_{g}(G) \leftarrow {}^{6}A_{1g}$
25,150	0.014	2×10^{-8}	${}^{4}A_{1g}(G) \leftarrow {}^{6}A_{1g}$
27,900	0.018	1×10^{-7}	${}^{4}T_{2g}(D) \leftarrow {}^{6}A_{1g}$
29,700	0.013	3×10^{-8}	${}^{4}E_{g}(D) \leftarrow {}^{6}A_{1g}$
32,400	0.02	1×10^{-7}	${}^{4}T_{1g}(P) \leftarrow {}^{6}A_{1g}$

Figgis, Introduction to ligand fields

Figure A.50. Term diagram for $(d^5)Mn^{2+}$ for octahedral symmetry according to Orgel⁵⁰ (sextet and quartet terms

Fig. 4.11 Electronic spectrum of Cr³⁺ ions in alumina (ruby).

Ruby: Al_2O_3 : Cr^{3+}

Cr³⁺: íon $3d^3$ octaédricamente coordenado O estado fundamental do íon livre (⁴F) se desdobra em três estados: ⁴T_{1g}, ⁴T_{2g} e ⁴A_{2g} sendo ⁴A_{2g} o estado fundamental do ruby

O espectro de absorção mostra três bandas intensas *spin permitidas* (X,Y e Z) e três bandas fracas *spin proibidas* (A,B e C) mas vibronicamente permitidas

Espectro eletrônico do Ruby

Tanabe-Sugano diagram for a d³ system.

Straugham & Walker (eds.), Spectroscopy

Table 4.4	. (
Absorption	Transition
A lines	$t_{2g}^{3} {}^{4}A_{2g} \rightarrow t_{2g}^{3} {}^{2}E_{g}$
B lines	$\rightarrow t_{2g}^{3} T_{1g}^{2}$
X band	$\rightarrow t_{2g}^2 e_g {}^4T_{2g}$
C lines	$\rightarrow t_{2g}^{2} T_{2g}^{2}$
Y band	$\rightarrow t_{2g}^3 e_g^4 T_{1g}$
Z band	$\rightarrow t_{2g} e_g^2 t_T^2 T_{1g}$

Parâmetro de campo cristalino:

 $\Delta = 17000 \text{ cm}^{-1}, \text{ B} = 700 \text{ cm}^{-1}$

Cr³⁺: íon *3d*³, octaédricamente coordenado O espectro de absorção mostra duas bandas intensas *spin permitidas* (21550 e 28500 cm⁻¹) e uma bandas fraca *spin proibida.* Parâmetro de campo cristalino:

 $\Delta = 21550 \text{ cm}^{-1}, \text{ B} = 657 \text{ cm}^{-1} \Rightarrow \Delta/\text{B} = 32.8$

Shriver, Atkins, Langford, Inorganic Chemistry

Espectro eletrônico do Cr(NH₃)₆³⁺

14.6 The Tanabe–Sugano diagram for the d^3 configuration.

Séries espectroquímicas

The magnitude of 10Dq for various metal ions generally varies in the following order:

$$\begin{split} &Mn(II) < Ni(II) < Co(II) < Fe(II) < V(II) < Fe(III) < Cr(III) < V(III) \\ &< Co(III) < Mn(IV) < Mo(III) < Rh(III) < Pd(IV) < Ir(III) < Re(IV) \\ &< Pt(IV) \end{split}$$

Representative ligands give rise to the following order, referred to as the spectrochemical series:

 $I^{-} < Br^{-} < -SCN^{-} < F^{-} < urea < OH^{-} < CH_{3}CO_{2}^{-} < C_{2}O_{4}^{2-} < H_{2}O < -NCS^{-} < glycine < C_{5}H_{5}N \sim NH_{3} < ethylenediamine < SO_{3}^{2-} < o-phenanthroline < NO_{2}^{--} < CN^{-}$

Ruby e esmeralda

Ruby : Al_2O_3 : Cr^{3+} Transição: ${}^{4}A_2 \rightarrow {}^{4}T_2$: 2.23 eVEsmeralda : $Be_3Al_2Si_6O_{18}$: Cr^{3+} ${}^{4}A_2 \rightarrow {}^{4}T_2$: 2.05 eV

Nas duas pedras o Cr³⁺ substitui o Al³⁺ em sitios de coordenação 6, simetria octaédrica distorcida. O íon responsável pela cor é o mesmo nas duas pedras (Cr³⁺) e ele está com a mesma valência (3+). De acordo com isto, a **esmeralda** deveria ter a mesma cor do **ruby** !

Ruby : ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$: 2.23 eV

Esmeralda : ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$: 2.05 eV

Como resultado da pequena diferença no campo cristalino, a linha vertical da transição no diagrama de energia se desloca de 2.23 eV para 2.05 eV. O nível ${}^{4}T_{1}$ é rebaixado de 3.0 para 2.8 eV, mudando a forma da banda de absorção no violeta do rubi. O nível ${}^{4}T_{2}$ abaixa de 2.23 para 2.02 eV, mudando também a forma da banda de absorção. Como resultado, a absorção verde – amarela no ruby muda para amarela - vermelha na esmeralda. A transmissão vermelha do rubi desaparece, mais a azul é alargada, dando a forte transmissão verde – azul típica da esmeralda

Ruby : AI_2O_3 : Cr^{3+} **Esmeralda** : $Be_3AI_2Si_6O_{18}$: Cr^{3+} **Alexandrita** : $BeAI_2O_4$: Cr^{3+} **Beryl**: anel de silicatos. Os oxigênio do AIO_6 são os mesmos do SiO_4 e BeO_4 (delocalizado) dando o carater covalente. O Cr^{3+} experimenta um campo cristalino fraco. AI_2O_3 (*corundum*) : mineral consistente de camadas de íons O_2 com AI^{3+} ocupando 2/3 dos sítios interticiais. A carga (-) esta isolada nos oxigênios (carater iônico). Na **alexandrita**, o carater da ligação é intermediária **Color Figure 21** Synthetic alexandrite gemstone, 5 mm across, changing from a reddish color in the light from an incandescent lamp or a candle to a greenish color in daylight or the light from a fluorescent tube lamp.

O balanço entre duas bandas de trasmissão, uma na parte vermelha do espectro e outra no verde amarelo, producem este raro efeito.

Nassau: *The phys and chem of colors.* Laeffler & Burns Am. Sci. 64, 636, 1976

Alexandrite effect : BeAl₂O₄ : Cr³⁺

Absorve no azul – violeta e no laranja – amarelo Transmite no verde e no vermelho

Na luz do dia, a pedra aparece verde. Em luz incandescente ela aparece vermelha

Na luz do dia, na qual a radiação é rica em azul, a pedra transmite a mesma proporção de luz vermelha e verde. Como o olho é mais sensível a luz verde, a pedra aparece como uma esmeralda.

Sob luz incandecente, rica em λ de baixas energias a pedra transmite mais a luz vermelha, e ela aparece numa cor semelhante ao rubi. O efeito ocorre como um fenômeno psico-físio, resultante de uma resposta específica do olho e o cerebro humano a diferentes iluminações.

Peridoto (olivina) : Fe²⁺/ Mg₂SiO₄

O íon do metal de transição tem duas simetrias:

Sítios M1 : Fe²⁺ em simetria octaédrica com distorção tetragonal (D_{4h})

Sítios M2 : Fe^{2+} sítios não centrosimétricos, octaédricos com distorção trigonal (C_{3v})

Nassau: The physics and chemistry of colors. Laeffler & Burns: Colors of gems and minerals. American Scientist 64, 636 (1976) Schumann, Gemas do mundo.

Figure 6. The optical absorption spectra of peridot (Fe²⁺/Mg₂SiO₄) show features at 8,300 and 11,700 cm⁻¹ and at 9,500 cm⁻¹ which are the spin-allowed crystal field transitions in Fe²⁺ in the M1 and M2 sites, respectively. These correlate with the allowed transition energies shown in Figure 5. α , β , and γ are the three optical directions of peridot along which the polarized spectra are obtained. (After Burns 1970.)

A forte absorção na regíão do vermelho é responsável da cor verde amarela Caraterística do mineral.

Chrysoberil: Al₂BeO₄ : Fe³⁺

Absorve fortemente na região violeta e Azul dando uma cor amarela ao mineral

Os sítios de Al³⁺ ocupados pelo Fe³⁺ tem a mesma geometria que os sítios de Mg ocupados pelo Fe²⁺ em (Mg,Fe)₂ SiO₄

A diferenças nos espectros de absorção se devem as diferenças nas estrutura eletrônica do Fe²⁺ e Fe³⁺.

As transições no Fe³⁺ (3d⁵⁾ é proibida por spin enquanto que as de Fe²⁺ são Permitidas (conservam o número de eletrons desemparelhados)

Transições de transferência de carga

Um complexo pode absorver radiação pela transferência de um eletron de um ligante para os orbitais *d* do átomo central, ou vice-versa. Nestas transições de transferência de carga, o elétron movimenta-se por grandes distâncias, o momento de dipolo da transição pode ser grande e a absorção muito intensa.

Transição de transferência de carga de ligante para metal (LMCT): íon permanganato, MnO₄⁻: a coloração violeta das soluções provocada pela absorção muito intensa entre 420 e 700 nm. O elétron migra de um orbital que está basicamente confinado no átomo de O dos ligantes para um orbital confinado no Mn.

Transição de transferência de carga do metal para o ligante (MLCT): transferência de um eletron *d* para os orbitais π antiligantes de um ligante aromático. O estado excitado pode ter tempo de vida longo se o eletron π estiver muito deslocalizado sobre diversos aneis aromáticos.

Nassau: *The physics and chemistry of colors.* **Atkins & de Paula**, *Físico Química* **Laeffler & Burns**: *Colors of gems and minerals*. American Scientist **64**, 636 (1976)

Safira azul

Fe^{2+} , Ti^{4+} : Al_2O_3

Em 1902, o químico francés Verneuil tentou duplicar a safira azul Analisando a composição de várias pedras naturais ele observou que elas continham pequenas quantidades (< 1%) de óxidos de ferro e de titânio. A razão da presença destas duas impurezas só veio ser comprendida 60 anos depois.

O ferro e o titânio substituim o aluminio no Al_2O_3 . O ferro aparece como Fe³⁺ ou Fe²⁺. O titânio aparece como Ti⁴⁺. Se ambos os dois, Fe²⁺ e Ti⁴⁺ estão presentes, a interação entre eles é possível se eles estiverem localizados em sítios Al adjacentes. Uma destas configurações é mostrada na figura. Neste arranjo a distância entre os íons Fe e Ti (2.65 Å) é suficiente para sobrepor os orbitais d_{z2} , posibilitando o salto de um eletron de um íon para o outro. Ao perder um eletron, o Fe²⁺ se converte em Fe³⁺ e, ganhando este eletron, o Ti⁴⁺ se converte em Ti³⁺: Fe²⁺ + Ti⁴⁺ \rightarrow Fe³⁺ + Ti³⁺

Figure 7-3. Dichroic *o*-ray and *e*-ray absorption spectra of blue sapphire. Band a is derived from $Fe^{2+} \rightarrow Fe^{3+}$ charge transfer, band b from $Fe^{2+} \rightarrow Ti^{4+}$ charge transfer, band c from a ligand field transition in Fe^{3+} , and band d from $O^2 \rightarrow Fe^{3+}$ charge transfer. After G. Lehmann and H. Harder, *American Mineralogist*, 55, 98 (1970), copyrighted by the MSA.

 $Fe^{2+} + Ti^{4+} \rightarrow Fe^{3+} + Ti^{3+}$

A energia do lado direito é 2.11 eV mais alta que a do lado esquerdo. A figura mostra o correspondente esquema de energia e a transição entre o estado fundamental e o excitado. Se a energia da luz incidente coincide com este valor, a safira azul absorve de acordo ao esquema acima. O resultado é uma banda em 588 nm (Fig. 7.3b). A pedra tem também outras absorções em ambos limites do espectro visível.

Outro arranjo Fe²⁺ - Ti⁴⁺ no Al₂O₃ é na direção perpendicular ao eixo *c*. Neste caso a distância entre os íons é maior, 2.79 Å, e a sobreposição entre os orbitais *d* é menor. A diferença de energia é pouco menor mas a intensidade é muito menor (curva inferior)

Outras transições ligante a metal

Em minerais, transições de transferência de carga oxigênio - metal

O eletron é excitado de um orbital com carater basicamente *2p* do oxigênio pra um orbital de carater *3d* do metal.

Exemplos

Crocaite: PbCrO₄, mineral cor laranja: $O^{2-} \rightarrow Cr^{6+}$ Vanadite: Pb₅(VO₄)₃Cl, mineral cor laranja: $O^{2-} \rightarrow V^{5+}$

Estas transições de transferência de carga são responsáveis da absorção nas regiões azul, violeta e verde, resultando a cor alaranjada do mineral.

Agua marinha

Fe²⁺, Fe³⁺: Be₃Al₂Si₆O₁₂

A absorção no UV devido à transição de transferência de carga Oxigênio \rightarrow metal (Fe³⁺) é muito mais intensa que as transições d - d de campo cristalino do íon Fe³⁺, as quais são transições spin proibidas).

O Fe²⁺ e o Fe³⁺ ocupam sitios octaédricos do Al na estrutura, com distâncias Al – Al de 4.6 Å. Se estes íons estão em sitios AlO₆ adjacentes podem ocorrer transições de transferência de carga Fe²⁺ \rightarrow Fe³⁺. Dado que o eixo metal – metal é || *c*, a banda (16.100 cm-1) aparece somente com polarização || *c*

Agua marinha : Fe²⁺, Fe³⁺: Be₃Al₂Si₆O₁₂

As bandas espectrais da pedra são:

- 10.000 cm⁻¹ : banda relacionada as vibrações da molécula H₂O atrapada nos canais
- 12.300 cm⁻¹ : absorção forte Fe²⁺ octaédrico. Transição de campo cristalino spin permitida
- ~25.000 cm⁻¹ transição de campo cristalino spin proibida de Fe³⁺ octaédrico
- 4) UV : transição de transferência de carga $O^{2-} \rightarrow Fe^{3+}$
- 5) ~16.100 cm⁻¹ : transferência de carga Fe²⁺ \rightarrow Fe³⁺ observada somente com polarização || *c*

Transições envolvendo orbitais moleculares

Exemplo: lapis lazuli (Ca, Na)₈(AlSi)₁₂O₂₄(SO₄,S,Cl)·H₂O A cor azul se deve as transições eletrônicas nas espécies S_3^-

Transições $\pi \to \pi^*$ e n $\to \pi^*$

A absorção em uma dupla ligação C=C excita um elétron π para um orbital π^* antiligante. A atividade do cromóforo se deve a uma transição $\pi \to \pi^*$. A sua energia é cerca de 7 eV para uma ligação dupla não conjugada, o que corresponde a uma absorção em 180 nm (região UV)

A transição responsável pela absorção dos compostos com carbolina pode ser atribuida aos pares isolados de eletrons do átomo de oxigênio. As energias destas transições $n \rightarrow \pi^*$ são da ordem de 4 eV (290 nm)

Atkins & de Paula, *Físico Química* Laeffler & Burns: *Colors of gems and minerals*. American Scientist **64**, 636 (1976)

Table 1. Re	presentative minerals	s whose color is due	to crystal field transi	tions
-			•	
Ion	Mineral	Formula	Coordination site and metal- oxygen distance (Å)	Color
			1>	00107
(VO ²⁺)	apophyllite	$\begin{array}{l} \mathrm{KCa}_{4}[\mathrm{Si}_{*}\mathrm{O}_{10}]_{2} \\ \mathrm{F}(\mathrm{H}_{2}\mathrm{O})_{a} \end{array}$	$CaO_{6}F$ M - O = 2.51 K(OH ₂) ₆	lt. green
۷,.	zoisite (tanzanite) grossular (tsavorite)	Ca,Al,[SiO,] [Si,O,]O(OH) Ca,Al,(SiO,),	M = 0 = 2.83 AlO_{6}/C_{2V} M = 0 = 1.97 AlO_{6}/O_{h} M = 0 = 1.95	biue green
Cr3+	beryl (emerald)	Be3Al2Si6O18	AIO_6/C_{3V} M - O = 1.91	green
	chrysoberyl (alexandrite)	BeAl ₂ O ₄	AlO_6/C_{3V} M - O = 1.93 AlO_6/D_{sh} M - O = 1.89	green/ red
	corundum (ruby)	Al ₂ O ₃	AlO_{a}/C_{sv} M $- O = 1.91$	red
Mn3•	tourmaline (rubellite)	Na(Li,Al),Al ₆ (BO ₃),(Si ₆ O ₁₆) (OH) ₄	AlO_{6}/C_{3} M - O = 1.93	pink

Laeffler & Burns: Colors of gems and minerals. American Scientist 64, 636 (1976)

Mn²*	beryl (morganite)	Be ₃ Al ₂ Si ₆ O ₁₈	AlO_{a}/C_{sv} M - O = 1.91	pink
	spessartine	$Mn_{3}Al_{2}(SiO_{4}),$	MnO_{0}/D_{1} M - O = 2.25	yellow- orange
Fe'*	andradite (demantoid)	Ca3Fe2(SiO4),	FeO_{6}/O_{h} M — O = 2.02	green
	chrysoberyl	BeAl ₂ O,	AlO_6/C_{3V} M - O = 1.93	yellow
Fe'+	olivine (peridot)	(Fe,Mg) ₂ SiO ₄	$M1/D_{4b}$ M - O = 2.10 $M2/C_{3v}$	yellow- green
	almandine	Fe,Al,(SiO ₄),	M = 0 = 2.14 FeO ₃ /D ₂ M = 0 = 2.22	dk. red
Co ² *	spinel	MgAl ₂ O ₄	MgO_4/T_d M = O = 1.92	blue
	erythrite	Co ₃ (AsO ₄) ₂ · 8H ₂ O	CoO_{o}/O_{h} M - O = 2.01	pink
Ni ²⁺	bunsenite	NiO	NiO_6/O_h M — O = 2.09	green
Cu ¹⁺	dioptase	Cu ₆ (Si ₆ O ₁₈). 6H ₂ O	$CuO_4(OH_2)$ M - O = 2.16	green
	turquoise	CuÂl ₆ (PO ₄), (OH) ₈ ·4H ₂ O	$Cu(OH)_{(OH_1)},$ M - O = 2.15	lt. blue

Laeffler & Burns: Colors of gems and minerals. American Scientist 64, 636 (1976)

Table 2. Represent	ative minerals whose c	olor is due to mo	lecular orbit	al transitions
a. Metal→metal cha	arge transfer			
Mineral	Formula	Metal-metal distance (Å)	Geometry	Color
Fe ² *→Fe ³ *				
vivianite	Fe ₃ (PO ₄) ₂ ·8H ₂ O	FeII-FeII: 2.85 (1 b)	edge ^a	α dark blue ^e β pale green
beryl (aquamarine)	$\operatorname{Be_3Al_2Si_6O_{18}}$	Al-Al:4.60	Sb	ϵ blue f ω yellow
cordierite (iolite)	(Mg,Fe ²⁺) ₂ (Al, Fe ³⁺) ₃ (AlSi ₅ O ₁₈)	Me-Tl:2.85	edge¢ OT	α colorless β blue γ violet
Fe⁺+→Ti⁴*				5
corundum (sapphire)	Al ₂ O ₃	2.65 (c) 2.79 (1 c)	face <i>d</i> edge	ω dark blue ϵ light blue
kyanite	Al ₂ SiO ₅	2.76 - 2.88	edge	blue
b. Oxygen→metal	charge transfer		4	
Mineral	Formula	Metal—oxygen distance (Å)	Cation	Color
crocoite vanadinite	PbCrO ₄ Pb ₅ (VO ₄) ₃ Cl	$\begin{array}{c} 1.64 \\ 1.74 \end{array}$	Cr ⁶⁺ V ⁵⁺	orange-
beryl (heliodore)	Be, Al, Si, O, ,	1.91	Fe ³⁺	yellow
c. Other molecula	r orbital transitions			
Mineral	Formula	1	Species	Color
lazurite (lapis lazuli)	Na, Al, Si, O, (Cl,S,SO,) · J	i,o	S3 ⁻	blue
amber	organic		organic	yellow

Pigmentos cujas cores são produzidos por transições de transferência de carga ligante ao metal

D'		
rigment	Primary orbitals involved ^b	
Cadmium yellow (CdS)	Ligand $\pi_n \longrightarrow$ metal 5s	
Vermilion (HgS)	Ligand $\pi_p \longrightarrow$ metal 6s	
Naples yellow [Pb ₃ (SbO ₄) ₂]	Ligand $\pi_n \longrightarrow$ metal 5s or 5p	
Massicot (PbO)	Ligand $\pi_n \longrightarrow$ metal 6s	
Chrome yellow (PbCrO ₄)	Ligand $\pi_n \longrightarrow$ metal 3d	
Red and yellow ochres (iron oxides)	Ligand $\pi_p \longrightarrow$ metal 3d	

Huheey, Keiter & Keiter, Inorganic Chemistry

Referências Bibliográficas

B.N. Figgis : Introduction to ligand fields Schlafer & Gliemann, Basic Principles of ligand field theory. J.W. Orton, Electron Paramagnetic Resonance Nassau: The physics and chemistry of colors. Harris & Bertolucci, Symmetry and Spectroscopy Orgel, Introdução à Quimica dos Metais de Transição J.E. Huheey, E.A. Keiter, R.L. Keiter: *Inorganic Chemistry* Laeffler & Burns: Colors of gems and minerals. American Scientist **64**, 636 (1976) Shriver, Atkins, Langford, Inorganic Chemistry AW. Schumann : Gemas do Mundo