

Laboratório Avançado de Física

Radiação do Corpo Negro

Introdução

Até o final do século XIX, acreditava-se que praticamente todos os fenômenos físicos podiam ser descritos com grande precisão e detalhe através das leis de *Newton* e/ou das equações de *Maxwell*. Relata-se, inclusive, que os jovens universitários da época eram alertados a seguir carreiras diferentes da de Ciências Físicas, visto que pouco ou nada de relevante restava a ser feito na área. Um destes jovens chamava-se *Max Planck* que, felizmente, ignorou tal conselho. De fato, o período de transição entre os séculos XIX e XX foi marcado por vários experimentos que mudaram radicalmente a visão científica da época, dando origem àquilo que hoje chamamos de Física Moderna ou Física Quântica [1]. Dentre estes experimentos destaca-se o estudo da radiação emitida por objetos aquecidos.

Além dos aspectos práticos envolvidos na produção-fundição de materiais, a investigação deste tipo de radiação contou com a participação de notáveis cientistas: *William Herschel, Robert Bunsen, Gustav Kirchhoff, Joseph Stefan, Ludwig Boltzmann, Wilhelm Wien, Lord Rayleigh, James Jeans*, etc. Como resultado, tivemos contribuições científicas fantásticas (lei de deslocamento de *Wien* e lei de *Stefan-Boltzmann*, por exemplo) que culminaram com o trabalho de *Max Planck* acerca da distribuição de radiação de energia [2].

Ao contrário do que vinha sendo feito até então, em 1900, *Planck* fez uma proposta que ele considerou desesperadora mas que, na realidade, provou ser revolucionária. *Planck* sugeriu que as energias associadas à radiação térmica deviam ser quantizadas, *i.e.*, que podiam ocorrer apenas em quantidades muito definidas. De acordo à sua proposta, a energia devia ser dada por múltiplos inteiros da quantidade hf onde: f correspondia à frequência da radiação e h era uma constante (atualmente denominada constante de *Planck*). Não tardou muito para que sua proposta fosse verificada em outras situações e, pela introdução do conceito de *quantum de energia*, Planck recebeu o Prêmio Nobel em Física de 1918 [3].

Objetivos

- Verificação da lei de *Stefan-Boltzmann*: estudar a radiação térmica proveniente de um objeto aquecido a diferentes temperaturas.
- Radiometria: estudar a influência de fatores geométricos sobre a emissão de radiação térmica.
- Comparar os valores de emissividade térmica de diferentes materiais-superfícies.
- Entender os princípios de funcionamento de um detector de radiação térmica (termopilha).

Equipamentos

- 1 termopilha (pilha de Moll)
- 1 (mili-)voltímetro
- 1 termômetro / termopar
- 1 cubo de Leslie
- 1 auto-transformador (Varivolt) esferas metálicas (cromada e oxidada) discos metálicos (cromado e oxidada) Fios para conexão, etc.

Descrição do Experimento

A realização desta prática consiste, essencialmente, no estudo da radiação térmica emitida por diversos materiais a diferentes temperaturas. Para tanto, faremos uso de um cubo de *Leslie* e de esferas e discos com diferentes superfícies. O cubo de *Leslie* nada mais é que um cubo de alumínio com quatro faces distintas: enegrecida, pintada de branco, rugosa, e polida. Em seu interior há uma lâmpada de filamento cuja tensão é controlada por um auto-transformador (Varivolt). Diferentes valores de tensão determinam diferentes temperaturas no cubo de *Leslie*, as quais podem ser medidas diretamente com o auxílio de um termômetro.

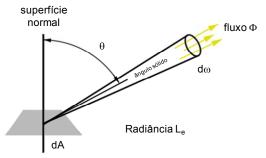
Tanto no cubo de *Leslie* quanto nas esferas e discos aquecidos, apenas uma fração da radiação térmica é detectada pela termopilha (ver Anexo). <u>Para minimizar a influência da radiação ambiente, recomenda-se posicionar a termopilha a uma distância d tal que o ângulo sólido subentendido pela termopilha limite-se apenas à secção do objeto em análise.</u>

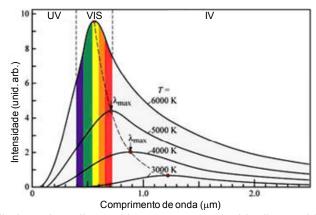
Antes de realizar o experimento, contudo, façamos algumas breves considerações acerca dos principais conceitos envolvidos.

Define-se por radiância L_e, a quantidade de radiação que atravessa uma superfície, compreendida por um ângulo sólido em uma dada direção. Trata-se de um conceito muito útil uma vez que indica quanta potência é emitida ou refletida por um objeto em uma condição espacial bem definida – geralmente determinada pela geometria envolvida na disposição

objeto-detector (Figura 1). De acordo ao Sistema Internacional, a radiância L_e é dada pela potência por unidade de ângulo sólido por unidade de área, ou W sr⁻¹ m⁻². Na forma de radiância espectral L_e (f ou λ) devemos considerar, também, a energia da radiação envolvida, ou seja: W sr⁻¹ m⁻² Hz⁻¹ (em termos da frequência f) ou W sr⁻¹ m⁻³ (em termos do comprimento de onda λ).

Se o elemento de área dA emitir-refletir isotropicamente em todo espaço (como no caso de um corpo negro ideal), dizemos que o objeto é uma fonte de *Lambert*, e sua radiância depende apenas da energia (f ou λ) considerada. Logo, quando integrada em todo o espaço (*i.e.*, 2π sr), a taxa de radiação emitida por unidade de área M_e passa a se chamar densidade espectral de fluxo e corresponde à potência emitida por unidade de área por unidade de energia: W m⁻² Hz⁻¹ ou W m⁻³. A relação entre L_e e M_e para fontes de *Lambert* é $M_e = \pi L_e$.




Figura 1 – Principais quantidades envolvidas na emissão-reflexão de radiação de um objeto.

Para um corpo negro ideal, a distribuição espectral de M_e , *i.e.*, $M_e = M_e(\lambda)$ é dada pela fórmula de *Planck*:

$$M_{e}(\lambda) = \frac{C_{1}}{\lambda^{5} (e^{\frac{C_{2}}{\lambda^{T}}} - 1)}$$

$$(1)$$

onde: $C_1 = 2\pi$ h $c^2 = 3.7405 x 10^{-16}$ W m^2 , e $C_2 = c$ h / $k_B = 1.43878 x 10^{-2}$ m K. A Figura 2 ilustra algumas destas distribuições, para diferentes temperaturas, em função do comprimento de onda λ .

Figura 2 – Espectros de distribuição de radiação (de um corpo negro ideal) para 3000, 4000, 5000 e 6000 K. As principais regiões do espectro eletromagnético (ultravioleta, visível e infra-vermelho) estão indicadas na figura.

A integral da Eq.(1) reproduz os resultados obtidos experimentalmente por *Joseph Stefan* e posteriormente modelados por *Ludwig Boltzmann*, e corresponde à lei de *Stefan-Boltzmann*:

$$M_{e} = \int_{0}^{\infty} M_{e}(\lambda) d\lambda = \frac{2\pi^{5} k_{B}^{4}}{15c^{2} h^{3}} = \sigma T^{4}$$
 (2)

onde σ é a constante de *Stefan-Boltzmann* cujo valor é 5.6697x10⁻⁸ W m⁻² K⁻⁴.

Até então, fizemos uso do conceito de corpo negro sem, contudo, defini-lo adequadamente. O corpo negro é um sistema idealizado capaz de absorver toda radiação eletromagnética que sobre ele incide, independente de sua energia. Em equilíbrio térmico, emite radiação de acordo à lei de *Planck*, cuja distribuição depende apenas da temperatura (Figura 2). Além disso, um corpo negro em equilíbrio térmico: (1) é um emissior ideal, *i.e.*, emite tanto ou mais energia que qualquer outro objeto à mesma temperatura, e (2) é um emissor isotrópico. Um pequeno orifício em uma das paredes de um grande reservatório é uma boa aproximação de corpo negro já que, uma vez dentro do reservatório, a radiação experimenta múltiplas reflexões até ser completamente absorvida. Em situações reais, podemos nos aproximar muito de um corpo negro ideal mediante a escolha adequada: do tipo de material, da faixa de temperatura desejada, e dos comprimentos de onda envolvidos. Neste caso, a distribuição de radiação do objeto é semelhante àquela do corpo negro ideal exceto por um fator constante, o qual denominamos de emissividade ε. Desta forma, devemos reescrever a lei de Stefan-Boltzmann tal que:

$$M_{a} = \varepsilon \sigma T^{4} \tag{3}$$

com 0 < ϵ < 1. Estritamente, ϵ = $\epsilon(\lambda,T)$ e quando a Eq.(3) descreve razoavelmente bem o objeto, dizemos tratar-se de um corpo cinza. A Tabela 1 apresenta os valores de ϵ para alguns materiais.

Tabela 1 – Valores de emissividade de alguns materiais para diferentes estados e temperaturas.

Material		T (°C)	3	Material		T (°C)	3
Alumínio		25	0.02	Zinco	galvanizado	40	0.28
		100	0.03		oxidado	260	0.11
					polido	260	0.02
Latão	não polido	20	0.07	Asfalto		40	0.93
Carbono	filamento	260	0.95	Tijolo		25	0.93
Cobre	oxidado	40	0.87	Cerâmica (alumina)		90	0.90
	não-polido	40	0.22	Argila		20	0.39
	polido	40	0.03	Concreto		20	0.6-0.9
	fundido	1200	0.13	Granito		25	0.45
Ouro	polido	40–260	0.02	Vidro		100	~0.8
Ferro	oxidado	100	0.74	Pintura	colorida	24	~0.9
	ferrugem	25	0.70		alumínio	24	0.3-0.7
	fundido	1700	0.45		branca	93	0.94
Níquel	polido	40	0.05	Gelo		0	0.97
Platina		40	0.05	Areia		20	0.76
Prata	polida	40	0.01	Xisto		20	0.69
Aço	polido	40	0.07	Fuligem de carvão		20	0.95
	oxidado	25	0.80				
Tungstênio	filamento	40	0.03	Madeira		38	0.91
_		540	0.11				
		2800	0.35				

Procedimento Experimental

Não se esqueça que muitos dos objetos em estudo estarão a temperaturas que podem causar queimaduras.

Exceto quando indicado em contrário, considere todos os emissores térmicos como "corpos cinza", isto é, ε = const. < 1.

Cubo de Leslie

- 1 Posicione a termopilha a uma certa distância do cubo de *Leslie* (Figura 3a). Com o auxílio do auto-transformador, varie a temperatura do cubo (entre T_{ambiente} e ~ 200 °C) e anote os valores correspondentes de tensão da termopilha. Repita o mesmo processo para cada uma das quatros faces do cubo. <u>Para fins comparativos, é importante não alterar a distância cubo-termopilha.</u> Em um único gráfico, represente as tensões indicadas pela termopilha (para cada face) em função de T⁴, e verifique se a lei de *Stefan-Boltzmann* é obedecida. Utilize os dados fornecidos pelo fabricante da termopilha para determinar a radiação emitida em W/cm².
- 2 Encontre as razões entre as emissividades de cada face do cubo, relativamente à da face negra. Leia sobre: Kirchhoff's law of thermal radiation.
- 3 Por intermédio da Eq. (1) faça dois gráficos de $M_e(\lambda)$ para as temperaturas mais alta e mais baixa medidas. Considerando que a termopilha responde apenas no intervalo de 150 nm a 15 μ m, determine (se houverem) os percentuais de perda de detecção. Como este tipo de erro afetará seus resultados?

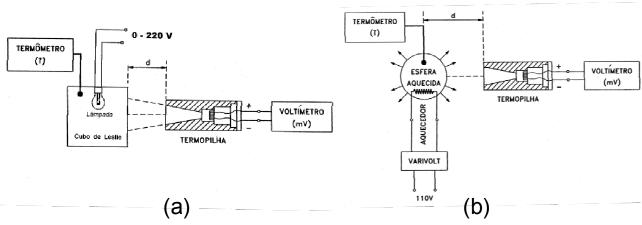


Figura 3 – Diagramas das montagens experimentais envolvendo: (a) cubo de Leslie e (b) esferas e discos.

Discos & Esferas

- 4 De maneira análoga ao que foi feito com o cubo de *Leslie*, porém utilizando os discos de cobre (um oxidado e o outro cromado), meça a tensão da termopilha para diferentes valores de temperatura (Figura 3b).
- 5 Repita o procedimento para as esferas (oxidada e cromada) e represente, em um único gráfico, os valores encontrados para os discos e as esferas. Aproveite e determine as razões entre as emissividades dos diferentes objetos (disco/esfera) e superfícies (oxidada/cromada).
- 6 Deduza uma expressão para a tensão gerada pela termopilha em função das seguintes quantidades: dimensão do emissor térmico (secção circular), separação emissor-termopilha, e emissividade.

- 7 Coloque a esfera oxidada, por exemplo, em aproximadamente 100 °C e meça a tensão da termopilha para diferentes separações esfera–termopilha. Faça uma representação gráfica dos valores obtidos e determine o valor da emissividade da esfera oxidada. Discuta os resultados obtidos com o auxílio da expressão encontrada no item anterior.
- 8 Compare e discuta os valores obtidos experimentalmente com os da literatura.

Questões

- Piscuta, com o auxílio de representações gráficas, as distribuições espectrais de radiação térmica conforme previstas por *Rayleigh-Jeans* e *Planck*. Discuta, ainda a lei de deslocamento de *Wien*.
- PESDOCE os principais componentes de um pirômetro óptico e explique o seu princípio de funcionamento. também o funcionamento da câmera termográfica e do termômetro infravermelho.
- PExplique o efeito Seebeck no qual se baseia a operação de uma termopilha. E quanto ao efeito Peltier, o que podemos dizer a respeito?
- ? A partir das informações contidas no Anexo deste roteiro, justifique o fato de a voltagem V gerada por uma termopilha ser proporcional a $(T^4-T_0^4)$ onde T é a temperatura do corpo emissor e T_0 a temperatura ambiente.
- Piscuta a respeito das fotos-figuras apresentadas na primeira página deste roteiro: você saberia identificá-las e dizer do que tratam?

Referências

Física Moderna

College Physics (OpenStax College, 2012) http://cnx.org/content/col11406/latest/.

Paul Tipler, Física Moderna (Guanabara Dois, 1981) – 539^T595f

Arthur Beiser, Conceitos de Física Moderna (McGraw-Hill, 1987) - 539^B423c

Robert Eisberg e R. Resnick, Física Quântica (Ed. Campus, 1979) - 530.12^E36f

Termodinâmica

Charles Kittel and Herbert Kroemer, *Thermal Physics* (Freeman, 1980) – **530.132^K62t** *História* (conforme apresentadas na Introdução)

[1] http://en.wikipedia.org/wiki/History of quantum mechanics

[2] M. Planck, "Entropie und Temperatur strahlender Wärme", *Annalen der Physik* **306**, 719 (1900), & "Ueber das Gesetz der Energieverteilung im Normalspectrum", *Annalen der Physik* **309**, 553 (1901)– http://onlinelibrary.wiley.com/doi/10.1002/andp.19013090310/pdf, cuja versão em Inglês ("On the law of distribution of energy in the normal spectrum") pode ser obtida em http://theochem.kyoto-u.ac.jp/Ando/planck1901.pdf

[3] http://www.nobelprize.org/nobel_prizes/physics/laureates/1918/

Além destas, vale mencionar as seguintes:

http://physicsworld.com/cws/article/print/2000/dec/01/max-planck-the-reluctant-revolutionary – que trata em detalhe a real história por trás dos trabalhos de *Planck*: um cientista notável, e cujas pesquisas NÃO tiveram por objetivo "consertar" as inconsistências envolvendo a radiação do corpo negro (lei de *Rayleigh-Jeans*, catástrofe do UV, etc.) http://www.lhup.edu/~dsimanek/hell.htm & (http://www.sciencemagpie.com/2012/10/19/and-

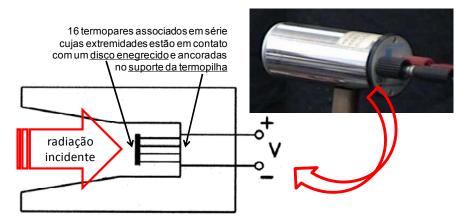
<u>finally-we-have-proof/</u>) – que discutem acerca de um aspecto pitoresco envolvendo a lei de Stefan-Boltzmann. Você acreditaria que tal lei prova que o Céu é mais quente que o Inferno? Simulações

http://phet.colorado.edu/sims/blackbody-spectrum/blackbody-spectrum_en.html

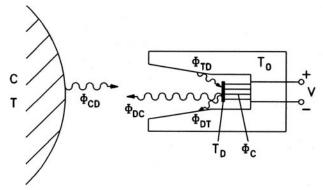
http://lectureonline.cl.msu.edu/~mmp/applist/blackbody/black.htm

http://webphysics.davidson.edu/alumni/milee/java/bb mjl.htm

Créditos


Ao longo dos anos, este roteiro passou por diversas atualizações e melhorias. Neste processo, tiveram participação ativa os Profs M. A. Aegerter, M. Siu Li, R. A. Carvalho e A. R. Zanatta. A foto da montagem experimental foi feita pelo Prof. M. Siu Li.

As diferentes fotos-figuras apresentadas na pg. 1 foram obtidas da internet.


ANEXO

O detector de radiação térmica A pilha termoelétrica de *Moll*

A Figura a seguir apresenta um diagrama simplificado e uma foto da chamada termopilha de Moll. Uma fração da radiação térmica proveniente de um corpo emissor (temperatura T) é absorvida por um disco enegrecido ($\emptyset \sim 10$ mm). Um conjunto de 16 termopares faz contato direto com o disco enegrecido e com o corpo da termopilha (temperatura T_0). Tal conjunto é responsável por transformar a radiação térmica em um sinal elétrico.

Ao absorver a radiação incidente, o disco enegrecido atingirá uma temperatura de equilíbrio $T_D = T_0 + \Delta T$ a qual, devido ao efeito *Seebeck*, dará origem a uma voltagem V. Para entender o significado desta voltagem V, consideremos a figura a seguir.

Na presença de um corpo aquecido, a termopilha estará sujeita às seguintes situações:

 $\Phi_{\text{CD}} = \text{ET}^4 - \text{correspondente}$ ao fluxo de radiação térmica proveniente do corpo C (temperatura T) e absorvido pelo disco enegrecido D,

 $\Phi_{DC} = ET_D^4$ – correspondente ao fluxo de radiação térmica re-emitido pelo disco enegrecido e absorvido pelo corpo C,

 $\Phi_{DT} = C_1 T_D^4$ – correspondente ao fluxo de radiação térmica re-emitido pelo disco enegrecido e absorvido pelo invólucro da termopilha (temperatura T_0), e

 $\Phi_{TD} = C_1 T_0^4$ – correspondente ao fluxo de radiação térmica re-emitido pelo invólucro da termopilha e absorvido pelo disco enegrecido.

Tais expressões são corretas apenas para corpos negros ideais. No caso de objetos que se comportem como "corpos cinzas", teremos que:

 $\Phi_{\text{C}} = k(T_{\text{D}} - T_{\text{0}}) = k\Delta T$ – correspondente à perda térmica (por condução) do disco enegrecido para o invólucro da termopliha.

Como a voltagem V gerada pela termopilha é diretamente proporcional a ΔT , podemos reescrever a expressão anterior simplesmente como: $\Phi_{\text{C}} = \text{K}^*\text{V}$.

Na condição de equilíbrio térmico, o balanço energético do disco enegrecido sugere que:

$$\Phi_{\text{CD}} - \Phi_{\text{DC}} + \Phi_{\text{DT}} - \Phi_{\text{TD}} - \Phi_{\text{C}} = 0$$
 .

As constantes E e c₁ indicadas anteriormente são idênticas. Isto pode ser facilmente verificado observando que, à temperatura ambiente, o fluxo líquido de radiação térmica entre todos os objetos considerados (corpo aquecido + disco enegrecido + invólucro da termopilha) deve ser nulo.

Após alguma álgebra e considerando que a temperatura T_D do disco enegrecido encontra-se ligeiramente acima da temperatura ambiente T_0 (*i.e.*, $T_D \approx T_D$), pode-se mostrar que a tensão indicada pela termopilha pode ser dada por:

$$V = K(T^4 - T_0^4)$$
 . verifique essa expressão! adicione fatores, se necessário.

Além de simples, a expressão acima deixa evidente a correspondência entre a voltagem indicada pela termopilha e o fluxo líquido de radiação térmica experimentado pelo disco enegrecido. Como tais quantidades dependem de detalhes de construção da termopilha, os fabricantes costumam fornecê-los.

Para a termopilha a ser utilizada no presente experimento, K = 0.16 V W⁻¹.

Verifique exatamente esse valor para a termopilha que for de fato utilizada.