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5
Quantum Description of Raman Scattering

The classical description of the Raman effect developed in Chapter 4 provides an
account of the frequencies observed in the Raman spectra for carbon nanotubes,
including quantitative descriptions of some of the main spectral features. The ob-
served Raman lines are shifted in energy from the laser line in accordance with
their phonon energies, with energy conservation occurring for each scattering pro-
cess. For a quantitative description of the Raman intensities, a quantum description
of the scattering processes is needed. In the case of sp2 nanocarbons, a quantum
treatment is essential because of the resonance Raman scattering process. Even for
the main spectral features, their observed Raman frequencies depend strongly on
the quantum description of the internal scattering events. The goal of this chapter
is to introduce a quantum description of the Raman scattering process, starting
with the Fermi Golden Rule, which provides a theoretical basis for the scattering
process, ending with the form of the electron–photon and electron–phonon inter-
action Hamiltonians.

5.1
The Fermi Golden Rule

In this section we review a few of the results of time-dependent perturbation theo-
ry and the use of the Fermi Golden Rule to provide the background for a quantum
mechanical description of the Raman effect in Section 5.2. A detailed discussion
of these topics can be found in standard quantum mechanics text books [92, 200],
since the development of the formalism of Raman spectroscopy depends strong-
ly on the use of time-dependent electromagnetic fields. The most important case
of interest is the one where the external field is a sinusoidal function of time. For
most practical applications, the external fields are sufficiently weak, so that their
effect can be handled within the framework of perturbation theory, where the un-
perturbed wavefunctions serve as a basis for describing the perturbed system. If the
perturbation has an explicit time dependence, it must be handled by time-dependent
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In doing time-dependent perturbation theory, we solve the time-dependent form
of the Schrödinger equation, which is:

i„@ψ
@t

D Hψ D (H0 C H0(t))ψ , (5.1)

where H0(t) is a time-dependent perturbation. We then expand the time-depen-
dent wavefunctions ψ(r, t) in terms of the complete set of eigenfunctions of H0

u n(r)e�i En t/„,

ψ(r, t) D
X

n

an(t)u n(r) e�i En t/„ , (5.2)

where the an(t) are the time-dependent expansion coefficients. Combining Eq. (5.1)
and Eq. (5.2) we obtain a relation

Pam(t) D 1
i„

X
n

an(t)e i ωmn thmjH0(t)jni , (5.3)

where ωmn is the Bohr frequency proportional to the energy difference between
states m and n

ωmn D (Em � En)/„ , (5.4)

and hmjH0(t)jni is the time-dependent matrix element given by

hmjH0(t)jni D
ˆ

u�
m(r)H0(t)u n(r)d3r . (5.5)

Since H0(t) is time-dependent, so too are its matrix elements time-dependent.
In applying perturbation theory, we consider the matrix element hmjH0(t)jni to

be small, and we write each time-dependent amplitude as an expansion in pertur-
bation theory

am D a
(0)
m C a

(1)
m C a

(2)
m C � � � D

1X
iD0

a
(i)
m , (5.6)

where the superscript (i) gives the order of each term in perturbation theory. Thus
a

(0)
n is the zeroth-order term and a

(i)
n is the ith order correction to an . From Eq. (5.3),

we see that am(t) changes its value with time only because of the time-dependent
perturbation. Thus, the unperturbed situation (zeroth-order perturbation theory)
must give no time dependence in zeroth-order and has a value only for the initial
state labeled `

Pa(0)
m D 0, and a

(0)
m D δm` , (5.7)

where δm` D 1 for m D ` and δm` D 0 for m ¤ ` (Kronecker’s delta function).
Then the first-order correction becomes:

Pa(1)
m D 1

i„
X

n

a
(0)
n hmjH0(t)jnie i ωmn t D 1

i„ a
(0)
` hmjH0j`ie i ωm` t . (5.8)
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For our interest here, if the perturbation H0(t) has a sinusoidal time dependence
with frequency ω, which is the situation for all resonant phenomena, we can write

H0(t) D H0(0)e˙i ω t . (5.9)

This shows the explicit time dependence, so that upon integration of Eq. (5.8), and
after some manipulation of terms, we obtain the probability for finding an electron
in the state m, that is

ja(1)
m (t)j2 D jhmjH0j`ij2

„2

4 sin2((ωm` ˙ ω)t/2)
(ωm` ˙ ω)2

, (m ¤ `) , (5.10)

where ω is the applied frequency and ωm` is the resonant frequency for the tran-
sition. Here the explicit time dependence is contained in an oscillatory term of the
form [sin2(ω0 t/2)/ω02] where ω0 D ωm` ˙ ω. This function is also encountered in
diffraction theory and looks like that shown in Figure 5.1.

Of special interest here is the fact that the main contribution to this function
comes from ω0 Š 0, with the height of the main peak proportional to t2/4 and the
width proportional to 1/ t. This means that the area under the central peak is pro-
portional to t/4. If ω0 becomes zero, the system makes a selective transition from
a state ` to the corresponding state m with a transition probability proportional to t.
If we then wait long enough, a system in an energy state ` will eventually make a
transition to a state m, if photons of the resonant frequency ω`m are present.1)

Since the transition probability is proportional to t, it is therefore useful to in-
troduce the quantity called the transition probability per unit time and the relation
giving this quantity is called Fermi’s Golden Rule (named for Enrico Fermi who
first introduced this rule to calculate such transition probabilities).

Figure 5.1 Plot of sin2(ω0 t/2)/ω0 2 vs. ω0, a function which enters the calculation of typical
time-dependent perturbation problems [200].

1) When ja(1)
m j2 � 1, perturbation treatment can no longer be used. The increase of ja(1)

m j2 discussed

here is valid when ja(1)
m j2 � 1.
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In deriving Fermi’s Golden Rule, we must consider the system to be exposed to
the perturbation for a time sufficiently long, so that we can make a meaningful
measurement within the framework of the Heisenberg uncertainty principle:

∆E∆ t � „ , (5.11)

so that the uncertainty in energy (or frequency) during the time that the perturba-
tion acts is

∆E � h/ t (5.12)

or

∆ω`m � 2π/ t . (5.13)

But this is precisely the period of the oscillatory function shown in Figure 5.1. In
this context, we must think of the concept of the transition probability/unit time
as encompassing a range of energies and times consistent with the uncertainty
principle. In the case of solids, it is quite natural to do this in any case, because
the wave vector k is a quasi-continuous variable. That is, there are a large number
of k states which have energies close to a given energy since the quantum states
labeled by wave vector k are close together in a solid having about 1022 atoms/cm3.
Since the photon source itself has a bandwidth, we would automatically want to
consider a range of energy differences „δω0. From this point of view, we introduce
the transition probability/unit time Wm for making a transition to a state m

Wm D 1
t

X
m0�m

j a
(1)
m0 (t) j2 , (5.14)

where the summation is carried out over a range of energy states consistent with
the uncertainty principle; ∆ωmm0 � 2π/ t.

Substituting for ja(1)
m0 (t)j2 from Eq. (5.10), we obtain

ja(1)
m (t)j2 D 4jhmjH0j`ij2

„2

sin2(ω0 t/2)

ω02 (5.15)

and the summation in Eq. (5.16) is replaced by an integration over a narrow energy
range weighted by the density of states �(Em) which denotes the number of states
per unit energy range. We thus obtain

Wm D 4
„2 t

ˆ
jH0

m0`j2
sin2(ωm0` t/2)

ω2
m0`

�(Em0 ) dEm0 (5.16)

where we have written H0
m0` for the matrix element hm0jH0j`i. But, by hypothesis,

we are only considering energies within a small energy range Em0 around Em and
over this energy range the matrix elements and density of final states will not be
varying much. However, the function [sin2(ω0 t/2)/ω02] will be varying rapidly, as
can be seen from Figure 5.1. Therefore, it is adequate to integrate Eq. (5.16) only
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over the rapidly varying function [sin2(ω t/2)]/ω2. Writing dE D „dω0, we then
obtain

Wm ' 4jH0
m`j2�(Em)

t„2

ˆ
sin2 ω0 t

2

ω02 dω0 . (5.17)

The most important contribution to the integral in Eq. (5.17) comes from values
of ω close to ω0. On the other hand, we know how to do this integral between �1
and C1, since

ˆ 1

�1

sin2 x

x2
dx D π . (5.18)

Therefore we can write an approximate relation based on Eq. (5.17) by setting x D
ω0 t/2

Wm Š 2π
„ jH0

m`j2�(Em) . (5.19)

The simple formula in Eq. (5.19) is called Fermi’s Golden Rule, and is used to calcu-
late transition probabilities per unit time when considering the optical properties
of solids, including Raman scattering intensities.

If the initial state is a discrete level (such as a donor impurity level) and the final
state is a continuum (such as the conduction band), then the Fermi’s Golden Rule
(Eq. (5.19)), as written, yields the transition probability per unit time and �(Em) is
interpreted as the density of final states. Likewise if the final state is discrete and the
initial state is a continuum, then Wm also gives the transition probability per unit
time, only in this case �(Em) is now interpreted as the density of initial states. If the
transitions of interest are between a continuum of initial states and a continuum
of final states, then the Fermi Golden Rule must be interpreted in terms of a joint
density of states, whereby the initial and final states are separated by the photon
energy „ω inducing the transition.

Our discussion up to this point introduces the basic concepts behind Fermi’s
Golden Rule, that is it provides an understanding of each term in Wm and its
relation to the uncertainty principle. For further interpreting Raman spectra, we
need to consider first-order one-phonon scattering processes as well as second-or-
der two-phonon scattering processes, as shown in Figures 5.2 and 5.3. Therefore,
to describe the Raman processes we typically consider second-order and higher-or-
der perturbation theory, where we start in an initial state, scatter into one or more
intermediate states before scattering back to a final state. The expression for the
Raman intensity obtained by these higher-order perturbation processes is given in
Section 5.2. We do not derive the second-order and higher-order perturbation theo-
ry in this book since it is laborious, it does not add new physical insights and such
derivations can be found in standard quantum mechanics texts [92, 200, 201]. In
short, by increasing the order in perturbation theory, one matrix element and one
more term in the denominator will be added, with a summation over all possible
intermediate states, as described in the next section.
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Figure 5.2 (a) Schematics showing the
second-order Raman process for small
molecules, where both the electronic (parabo-
la) and vibrational levels are displayed, com-
parable to Figure 3.2. Notice the horizontal
displacement of the two parabolas, indicating
that the two different electronic levels have
different atomic positions. The upwards arrow
indicates vibronic state transition i ! m
mediated by the photon absorption, and the
downwards arrow indicates vibronic state
transition m ! f mediated by the pho-

ton emission. The energy difference between
the incident and scattered photons corre-
sponds to a quantum of atomic vibration. (b)
Schematics showing the third-order process
often used to describe the Raman process in
crystals. While the large upwards i ! m and
downwards m0 ! i arrows represent pho-
ton absorption and emission by the electron,
the small downwards arrow m ! m0 repre-
sents the electron losing energy to the lattice
through an electron–phonon scattering event.
The vibrational levels are not displayed.
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Figure 5.3 (a) One-phonon first-order,
(b) one-phonon second-order, and (c) two-
phonon second-order, resonance Raman spec-
tral processes. Parts (a1), (b1), (b2), and (c1)
show incident photon resonance conditions,
and parts (a2), (b3), (b4), and (c2) show scat-

tered photon resonance conditions. For one-
phonon second-order transitions, one of the
two scattering events is an elastic scattering
event (dashed lines). Resonance points are
shown as solid circles [80].

5.2
The Quantum Description of Raman Spectroscopy

In computing the Raman spectra related to totally symmetric phonons in small
molecules, we make use of the Frank–Condon effect, whereby the excitation of one
electron by a photon changes the atomic arrangement in a molecule, so that an
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overlap between the vibrational states nq and nq C 1 is possible (see Figure 5.2a).
That is, since the excited states have different wavefunctions which give a different
stable position for the atom in the molecule, the atom in the excited state moves
from its original position in the ground state, thereby inducing an atomic vibration.
Each of the four levels displayed in Figure 5.2a represents a different vibronic level,
which designates a given electronic and vibrational level.

In larger molecules or crystals, however, exciting one electronic state does not
change the atomic configuration, and second-order perturbation theory can only
give rise to elastic (Rayleigh) scattering of the light. In these cases, it is necessary
to go to third-order perturbation theory, whereby the excited electron perturbs the
atom in creating a phonon through an electron–phonon interaction. Such a process
is sketched in Figure 5.2b and is different from Figure 5.2a, where both the elec-
tronic and vibrational levels are displayed, showing a transition between vibronic
states. In Figure 5.2b only the electronic energies are displayed, and the system is
described as having the same initial and final electronic level, although one phonon
has been left in the system, mediated by the electron–phonon scattering event rep-
resented by the small downwards arrow. Figure 5.2b is pictorial, and the excited
energy levels m and m0 do not necessarily represent real electronic states, but just
the energy gained by the electron from its original energy Ei , as discussed below.

If the electron is initially in a state i with energy Ei , then light scattering can
excite the electron to a higher energy state m with energy Em (see Figure 5.2b) by
the absorption of an excitation energy (Em � Ei) from a laser (Elaser). If m is a real
electronic state (we usually draw a solid line), the light absorption is a resonant
process. This electron will be further scattered by a q � 0 phonon to a “virtual”
state m0, and decay back to state i by emitting the scattered light. Virtual states
are usually displayed by dashed lines and, within perturbation theory, they are de-
scribed by a linear combination of the electron eigenstates of the system with a
large energy uncertainty and a small lifetime to compensate for the uncertainty
principle. The initial “system”, therefore, has an electron in the state i and a pho-
ton with energy (Em � Ei ), while the final “system” has an electron in the state i, a
phonon of energy Eq and a photon with energy (Em � Ei � Eq). Alternatively, the
incident photon can excite the electron to a virtual state m with higher energy Em

and light scattering can serve to bring the system to a final state of lower energy Ei

by the emission of energy (Em � Ei). In this case, it is the photon emission that is
resonant, rather than the photon absorption. This alternative process is shown in
Figure 5.3a2. While in Figure 5.2b we show discrete electronic levels, in Figure 5.3
we show Raman scattering processes within the continuum electronic dispersion
near the Fermi level at the K point of graphene (see Section 2.2.2). Figure 5.3a1 is
analogous to Figure 5.2b, and Figure 5.3a2 shows first-order Raman scattering with
a resonant process involving the scattered light, while the other cases in Figure 5.3
show other possible processes discussed later.

Therefore, the first-order Raman intensity as a function of phonon energy Eq D
„ωq and of the incident laser energy Elaser is given by third-order perturbation
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theory by [91, 142]

I(ωq, Elaser) D
X

f

ˇ̌̌
ˇ̌̌X

m ,m0

Mop(k � q, i m0)M ep(q, m0m)Mop(k, mi)
(Elaser � ∆Emi)(Elaser � „ωq � ∆Em0 i )

ˇ̌̌
ˇ̌̌
2

,

(5.20)

in which

∆Em(0) i � (Em(0) � Ei) � i γr , (5.21)

and i, m, m0 and f denote, respectively, the initial state, the two excited intermedi-
ate states, and the final state of an electron, while γr denotes the broadening fac-
tor of the resonance event (see Section 4.3.2.5). The physical process is described
by an electron at wave vector k that is (1) excited by an electric dipole interaction
Mop(k, mi) with the incident photon to make a transition from state i to m, and
the electron is then (2) scattered by emitting a phonon with energy „ωq and wave
vector q through an electron–phonon interaction, M ep(q, m0m), and finally (3) the
electron in state m0 emits a photon by an electric dipole transition, through the
interaction Mop(k � q, i m0) to reach the final electronic state f D i . For momen-
tum conservation, q � 0. For an energy separation Ei m between the i and m states,
the resonance conditions are either with the incident photon, Elaser D Emi , or with
the scattered photon, Elaser D Emi C „ωq . To reach a given final state, the sum
in Eq. (5.20) is taken over all possible intermediate states m and m0. The interme-
diate states m are determined by specifying the initial state i with use of energy-
momentum conservation. In order to take the sum over the intermediate states,
we need to know the electric dipole matrix elements of the electron–photon inter-
action, Mop, and of the electron–phonon interaction, M ep, which will be discussed
in Section 5.4. In the scattering process, energy-momentum conservation for an
electron and phonon holds, but this is not explicitly written in Eq. (5.20).

Moving to a higher-order Raman process, the various diagrams in Figure 5.3b1–
b4 and 5.3c1,c2 show inelastic scattering processes which have to be described by
fourth-order perturbation theory. In Figure 5.3b1–b4, there is an internal electron
scattering process by a phonon, and another by a lattice defect or impurity, which
can cause an elastic scattering event. Both phonon emission and absorption are
possible and the order of the elastic and inelastic scattering processes can be inter-
changed. These processes will be discussed in Chapter 13. Figure 5.3c1,c2 shows
two second-order two-phonon Raman scattering processes. In this case, the inten-
sity as a function of Elaser and the sum of the two phonon energies ω D ω1 C ω2

is given by a similar formula,

I(ω, Elaser) /
X

i

ˇ̌̌
ˇ̌̌ X

m0 ,m00,ω1,ω2

Jm0,m00 (ω1, ω2)

ˇ̌̌
ˇ̌̌
2

, (5.22)

where
Jm0,m00 (ω1, ω2)

D Mop(k, i m00)M ep(�q, m00m0)M ep(q, m0m)Mop(k, mi)
(Elaser � ∆Emi)(Elaser � „ω1 � ∆Em0 i )(Elaser � „ω1 � „ω2 � ∆Em00 i )

. (5.23)
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Now we have two-phonon scattering processes with phonon wave vectors q and �q,
so that momentum conservation is possible with q ¤ 0. Due to momentum con-
servation for the whole process, most often the m00 and m states will be the same,
since all the others will generally be much farther in energy. In order to get two res-
onance conditions at the same time, an intermediate electronic state Em0 i is always
in resonance (Elaser D ∆Em0 i C „ω1), and either the incident resonance condition
(Elaser D ∆Emi) or the scattered resonance condition (Elaser D ∆Em00 i C„ω1 C„ω2)
is satisfied. On the other hand, for a second-order one-phonon process, the Raman
intensity is calculated by replacing one of the two phonon scattering processes by
an elastic impurity scattering process. Another point to mention concerns the ener-
gy uncertainty γr , which enters Eq. (5.21) and is operative in Eqs. (5.20) and (5.23).
Actually, the different denominators may have different γr values since they are
related to different scattering events. However it is usual to consider the same γr

for simplicity when there is no experimental information distinguishing them. The
physical origin of γr has been discussed in Section 4.3.2.5.

5.3
Feynman Diagrams for Light Scattering

Feynman diagrams are useful for keeping track of various processes that may occur
in an inelastic scattering process that absorbs or creates an excitation, such as the
six scattering processes shown in Figure 5.4a–f for creating an excitation (e. g., the
Raman Stokes process). The basic notation used in drawing Feynman diagrams
consists of propagators, such as electrons, phonons or photons and vertices where
interactions occur, as shown in Figure 5.4g. Time goes from left to right in the
diagrams in Figure 5.4. The basic diagram for the Raman process is given in Fig-
ure 5.4a and is taken from the Yu and Cardona book “Fundamentals of Semicon-
ductors” [202]. The other permutations of Figure 5.4a obtained by different orders
of the vertices are given in Figure 5.4b–f and are also found in [202]. We then use
the Fermi Golden Rule (Eq. (5.19)) for each diagram, by multiplying the contribu-
tions from each vertex. For example, the first vertex in Figure 5.4a contributes a
term to the scattering probability per unit time of the form

hnjHeR (ωlaser)jii
[Elaser � (En � Ei )]

,

where the Hamiltonian HeR (ωlaser) denotes the interaction between the electron
and the incident electromagnetic radiation field (ω i D ωlaser) taking the system
from an initial state i to an intermediate state n. The interaction energy for the sec-
ond vertex He-ion(ωlaser) is between the electron and the lattice vibrations of the ion
(or the electron–phonon interaction) and the corresponding energy denominator
is

Elaser � (En � Ei ) � „ωq � (En0 � En) D [Elaser � „ωq � (En0 � Ei)] .
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Figure 5.4 (a–f) Feynman diagrams for the six scattering processes that contribute to one-
phonon (Stokes) Raman scattering. Here ω i D ωlaser and ω s is the scattered light frequency.
(g) Symbols used in drawing Feynman diagrams to represent Raman scattering [202].
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Here Elaser D „ωlaser, „ωq is the phonon energy, Ei is the electron energy in the
initial state and En(0) is the electron energy in the intermediate state. For the third
vertex the denominator becomes [Elaser � „ωq � „ω s � (E f � Ei )], but since the
initial and final electron energies are the same, energy conservation requires the δ
function δ(„ωlaser � „ωq � „ω s ) to yield the probability per unit time for Raman
scattering for the diagram in Figure 5.4a:

Pph(ω s) D2π
„

ˇ̌̌
ˇ̌̌X

n,n0

hijHeR (ω s)jn0ihn0jHe-ionjnihnjHeR (ωlaser)jii
[Elaser � (En � Ei)][Elaser � „ωq � (En0 � Ei)]

ˇ̌̌
ˇ̌̌
2

� δ(Elaser � „ωq � „ω s) , (5.24)

in which „ω s denotes the photon energy for the scattered light.
The rules in drawing Feynman diagrams are:

� Excitations such as photon, phonons and electron–hole pairs that occur in Ra-
man scattering are represented by lines (or propagators). These propagators can
be labeled by the properties of the excitations, such as their wave vectors, fre-
quencies and polarizations.

� The interaction between two excitations is represented by an intersection of their
propagators. This intersection is known as a vertex and is sometimes highlighted
by a symbol such as a filled circle (electron–photon interaction) or an empty
square (electron–phonon interaction).

� Propagators are drawn with an arrow to indicate whether excitations are creat-
ed or annihilated in an interaction. Arrows pointing towards a vertex represent
excitations which are annihilated. Those pointing away from the vertex are for
excitations that are created.

� When several interactions are involved, they are always assumed to proceed se-
quentially from the left to the right as a function of time.

� Once a diagram has been drawn for a certain process, other possible process-
es are derived by permuting the time order in which the vertices occur in the
Feynman diagram.

Then summing over the six diagrams in Figure 5.4 yields the result

Pph(ω s) D2π
„

ˇ̌̌
ˇ X

n,n0

hijHeR (ω s)jn0ihn0jHe-ionjnihnjHeR (ωlaser)jii
[„ω i � (En � Ei)][„ω i � „ωq � (En0 � Ei)]

ChijHe-ionjn0ihn0jHeR (ω s)jnihnjHeR (ωlaser)jii
[„ω i � (En � Ei)][„ω i � „ω s � (En0 � Ei)]

C hijHeR(ωlaser)jn0ihn0jHe-ionjnihnjHeR (ω s)jii
[�„ω s � (En � Ei )][�„ω s � „ωq � (En0 � Ei )]

C hijHe-ionjn0ihn0jHeR (ωlaser)jnihnjHeR (ω s)jii
[�„ω s � (En � Ei )][�„ω s C „ω i � (En0 � Ei )]
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C hijHeR(ω s)jn0ihn0jHeR (ωlaser)jnihnjHe-ionjii
[�„ωq � (En � Ei)][�„ωq C „ω i � (En0 � Ei )]

C hijHeR (ωlaser)jn0ihn0jHeR(ω s)jnihnjHe-ionjii
[�„ωq � (En � Ei)][�„ωq � „ω s � (En0 � Ei)]

ˇ̌̌
ˇ
2

� δ(„ω i � „ω s � „ωq ) . (5.25)

Here we used „ω i instead of Elaser. Notice that having „ω i in the denominators or
not depends on the position (time ordering) at which the optical absorption takes
place in the Feynman diagram, and not all terms can be resonant, that is, when one
of the terms in the denominator vanishes, the transition probability diverges and
a resonance process takes place. Therefore, while all the terms in Eq. (5.25) play a
role in nonresonant Raman scattering, when considering resonance Raman scat-
tering with a fixed energy between the valence and conduction bands, only one of
the terms in Eq. (5.25) will dominate. Interestingly, this is exactly the term where
scattering occurs in the most intuitive order of events, that is, light absorption,
electron–phonon scattering, light emission (first term in Eq. (5.25)). For this rea-
son, the simpler Eq. (5.20) is enough for the calculation of Raman intensities under
resonance conditions. This concept is developed further in the problem set for this
chapter.

5.4
Interaction Hamiltonians

In this section we discuss the form of the interaction Hamiltonian HeR , which
denotes the interaction between the electron and the electromagnetic radiation
field (the electron–photon interaction), and the interaction Hamiltonian He-ion is
between the electron and the lattice vibrations of the ion (or the electron–phonon
interaction). Together with information about the electronic and vibrational states,
plus the exciting field, these Hamiltonians can be used to calculate the matrix ele-
ments Mop and M ep.

5.4.1
Electron–Radiation Interaction

The Hamiltonian HeR that can be used to obtain the Lorentz force for an electron
in an electromagnetic field is given by:

HeR D 1
2m

(p � eA)2 C V(r) , (5.26)

where m and e are the electron mass and charge, p , A and V(r) are, respectively,
the momentum, vector potential and crystal potential. This is known from clas-
sical electromagnetism theory, that in the presence of an electromagnetic field,
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the canonical momentum has to be substituted by p ! p � eA written here in
S.I. units. In the Coulomb gauge (r � A D 0), then p and A commute and Eq. (5.26)
becomes

HeR D
�

p2

2m
C V(r)

�
� e

m
p � A C e2A2

2m
. (5.27)

The term between brackets gives the Hamiltonian H0 for an electron in the poten-
tial V(r). Considering electromagnetic fields that are not so intense, the A2 term
can be neglected (weak field approximation), and the electron-electromagnetic field
interaction is given by:

HeR D � e

m
p � A . (5.28)

For light scattering by a crystal, the wavelength of light is much larger than the
unit cell dimensions, and an electron basis wavefunction '(r) (for example, a tight-
binding wavefunction) is localized around the position of an atom r0 (a situation
that is also valid for light scattering by a molecule). Considering monochromat-
ic plane waves (A(r , t) / e i k�r ), the interaction Hamiltonian HeR can be con-
sidered within the dipole approximation, which is represented by A(r, t)jΨ i �
A(r0, t)jΨ i.

Finally, by considering p � m(d r/d t), we can write HeR in terms of the electric
field and the position vector by

HeR D �er � E (r0, t) . (5.29)

A third approximation has been considered, that is, the contribution from the
derivative @[r � A(r0, t)]/@t vanishes, considering the time average over a complete
field oscillation period.

5.4.2
Electron–Phonon Interaction

The Hamiltonian He-ion for the electron–phonon interaction describes how the en-
ergy of the atoms change when they move through the so-called deformation po-
tential [203]

Hσ
e-ion(R S 0 , R S ) D

ˆ
φ(r � RS 0 )rv (r � R σ)φ(r � R S )d3r , (5.30)

where φ(r � RS ) is the electron wave function at site RS and v (r� Rσ) is the atomic
potential.2) Calculation of the electron–phonon interaction in nanocarbons will be
treated in Section 11.7, but considering here a simplified picture, the electron–
phonon matrix element for optical phonons can be obtained from the shift of the

2) For completeness, when calculating these matrix elements for determining the electron–phonon
coupling, both electrons and holes have to be taken into account.
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electronic bands under the deformation of the atomic structure corresponding to
the phonon-pattern by [204, 205]

M ep(k � q, mm0) D
s

„
2NΩ M ωq

X
a

εq
a

@Em

@u a

, (5.31)

where the sum over a runs over all atoms in the unit cell. The wave vector and band
index of the electronic state are here denoted by k and m, respectively. The q index
denotes the phonon with polarization vector εq

a while Em is the electronic energy
and u a is the atomic displacement. NΩ , M and ωq are the number of unit cells in
the system, the atomic mass and the phonon eigenvalue, respectively.

5.5
Absolute Raman Intensity and the Elaser Dependence

In Eqs. (5.20) and (5.22) the Raman intensity is given as proportional to the transi-
tion probability. Different authors present different proportionality constants, and
measuring the absolute Raman intensity is not an easy task, since it depends on
several experimental details. The simplest procedure is calibrating the Raman in-
tensities experimentally by measuring the Raman spectra of a well-established Ra-
man scatterer, such as a standard reference material. For example, the dependence
of the absolute Raman cross-sections for the cyclohexane liquid (C6H12) are known
from the literature [206].

Of special interest in this proportionality constant is a ω4
s -dependence predict-

ed by Raman scattering theory [207–215]. This ω4
s dependence is not a special re-

sult of Raman spectroscopy, but it comes from the general theory for dipole ra-
diation [216]. In short, let’s define the dipole moment by d D er, where e is the
electric charge and r is the vector connecting the negative and positive charges in
the dipole. It is known that radiation occurs only when the electric charge exhibits
acceleration. For this reason, the fields (H and E) are proportional to the second
time-derivative of the dipole momentum, that is H and E / Rd D e Rr describing
r D r0e i ω s t , Rd D �ω2

s d. In addition, the scattering intensity I can be related to
the energy flux given by the Poynting vector S which, for plane waves, is related
to the squared fields (I / S / H2 or E 2 / ( Rd)2). This gives rise to a ω4

s depen-
dence for the light emission.3) It is true that in Raman spectroscopy the incident
and scattered light have different energies from one another but, since the phonon
energies involving „ωq are usually much smaller than the excitation laser energy,
„ω i � „ω s is a good approximation and we can thus say that the absolute Raman
intensity should increase with E 4

laser.

3) This is also the reason why the sky is blue. For more details, see [216].
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Problems

[5-1] Using Maxwell’s equations, explain why we need a gauge field for the vector
potential A and a static potential φ. Consider some gauges explicitly and
explain under what kind of situation such gauges are useful by giving some
explanation of the physical phenomena.

[5-2] In a vacuum, show that the electric field is expressed by the vector potential
A.

[5-3] When we consider the Hamiltonian in the presence of a vector potential,
expand the Hamiltonian and retain the linear term in A. This corresponds
to a perturbation Hamiltonian for the electron–photon coupling constant.
Use the Coulomb gauge div A D 0 when you obtain this result.

[5-4] In the previous problem, we also have a term which is proportional to A2.
In order to neglect this term, this term should be at least 1/10 smaller than
the linear A term. What is the corresponding value of the electric field?
If A gives an electric field above this value, we should then consider the
nonlinear A2 effect of light.4)

[5-5] The Poynting vector, S D E � H is the power density per unit area of the
electromagnetic field. In a typical micro-Raman measurement system, the
diameter of the light beam is about 1 µm and the laser power is 1 mW. Es-
timate the power density of this micro-Raman setup and calculate E. Show
that the electric field thus obtained is not strong enough to be in the non-
linear regime.

[5-6] Show that there is C2 rotational symmetry in graphene. C2 rotational sym-
metry means that the lattice structure does not change under a 180ı rota-
tion about a point. Specify the symmetry axis of this C2 rotation.

[5-7] By the C2 rotation, the A and B carbon atoms in the unit cell are exchanged
with each other. Show that all A and B carbon atoms in the lattice are ex-
changed for any C2 rotation.

[5-8] When we put the origin of the coordinate system at the axis point of the
C2 rotation of graphene, show that the perturbation Hamiltonian for the
interaction of graphene with an incident light beam is an odd function of
the coordinates.

[5-9] When we solve a simple 2 � 2 tight-binding Hamiltonian for the π-band of
graphene (Eq. (2.29)), we get the wavefunction Ψ (k) as a linear combination
of the Bloch functions ΦA(k) and ΦB (k) consisting of A and B terms:

Ψ (k) D CA(k)ΦA(k) C CB (k)ΦB (k) .

4) The general nonlinear optical effect in materials occurs at a much lower power level for light since
the physical properties are saturated as a function of E. For example, the polarization vector P can
be expanded as αE C α(2) E2 C . . ., etc.
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Obtain the explicit form of CA(k) and CB (k) for s D 0 in Eq. (2.29) with
the use of f (k) and w (k) as defined in Eqs. (2.28) and (2.31), respectively.

[5-10] In the calculation for Problem 5-9, show CA D CB and CA D �CB for the
valence and conduction band, respectively, for any k point. Combining this
result with the fact that the perturbation Hamiltonian is an odd function of
the coordinates for exchanging A and B, obtain the dipole transition matrix
element which is proportional to hπ�jrjπi as a function of k.

[5-11] Using time-dependent perturbation theory, obtain the result for ja(1)
m (t)j2 in

Eq. (5.10).

[5-12] Plot ja(1)
m (t)j2 in Eq. (5.10) for the case of ωm` D ω/2, 2ω/3, 3ω/4, and ω.

Show that the peak height of the oscillation is increasing as ωm` increases.
This means that we can select only the closest m states for the calculation
of ja(1)(t)j2 as a first approximation.

[5-13] A delta function δ(x ) has two significant properties: (1) The values of
δ(x ) D 1 for x D 0, but D 0 for x ¤ 0. (2) When we integrate δ(x ) over
any region which includes x D 0, the integrated value is 1. Using these
definitions, obtain the following formula:

lim
t!1

sin2(α t)
πα2 t

D δ(α) ,

and then, using this formula, obtain Fermi’s Golden Rule directly.

[5-14] The uncertainty relation of ∆E∆ t � „ (Eq. (5.11)) is important in spec-
troscopy since most optical processes have a finite lifetime. If an excited
state has a lifetime ∆ t, the energy of the excited states has an energy uncer-
tainty value ∆E . In this case, time-dependent theory in which we consider
a definite energy, should be modified. Explain how the resonance condition
can be relaxed in the case of such a lifetime.

[5-15] For a photoexcited electron in a carbon nanotube, the electron can emit a
phonon within 1 ps. Estimate the uncertainty energy value for this electron.
For the photoluminescence process for which a photon is emitted, the ex-
cited electron has a relatively slower lifetime, on the order of 1 ns. Is the
accuracy of the spectrometer sufficient to observe the energy of a photolu-
minescent phonon?

[5-16] Analyze the first-order processes depicted in the Feynman diagrams of Fig-
ure 5.4 within the framework of a resonant process, which is obtained by
having null terms in Eq. (5.25). By starting with a given „ω i and the mate-
rial in the ground state, which processes can be and which cannot be res-
onant? Consider n D n0 for simplicity, which happens when the phonon
does not break the symmetry of the system.

[5-17] In the previous problem, derive a quantitative analysis to understand which
of the six processes in Eq. (5.25) dominate the total intensity. Choose values
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for Em � Ei and for „ωq and introduce the damping term i γr with a spe-
cific value for γr . You will realize that processes which seem “reasonable”
within our own “common sense” are closely related to whether or not the
resonance condition is achieved.

[5-18] When we consider one optical-absorption, one optical-emission, and one
phonon-emission vertex, we can obtain six possible Feynman diagrams.
How many Feynman diagrams are expected if we change one phonon-emis-
sion vertex into a two phonon-emission vertex? Illustrate using some dia-
grams where the process starts from the optical absorption.

[5-19] Demonstrate Eqs. (5.28) and (5.29) making clear where each approximation
is introduced.

[5-20] Show that for a periodic motion of charged particles forming a dipole d,
and c is the velocity of light, the intensity of radiation with frequency ω is
given by:

I D 4ω2

3c3 jdj2 . (5.32)




