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CHAPTER -

COUNTING STATISTICS
" AND ERROR PREDICTION —

¥

- Radioactive decay is a random process. Consequently, any measurement which

degree of statistical fluctuation. These inherent fluctuations represent an un-
_ avoidable source of uncertainty in all nuclear measurements, and often can be

includes the framework of statistical analysis required to process the results of
_Nuclear counting experiments and to make predictions. about the expected
_ precision of quantities derived from these measurements.

equipment. Here a set of measurements is recorded under conditions in which

influence of statistical fluctuations, these measurements will not all be the same
but will show some degree of internal variation. The amount of this fluctuation
can be quantified and compared with predictions of statistical models. If the
amount of observed fluctuation is not consistent with predictions, one can
conclude that some abnormality exists in the counting system. The ‘second

have only one measurement. We can then use counting statistics to predict its
_ inherent statistical uncertainty and thus estimate a precision that_should be
associated with that single measurement.

_ The distinctions made in the organization of this chapter are a critical part of

resented in Sections I and II below than from any other single cause. In
on I we will be careful to limit the discussion to methods used in the

is based on observing the radiation emitted in nuclear decay is subject to some

‘the predominant source of imprecision or error. The term counting statistics..

The value of counting statistics falls into two general categories. The first is to
_serve as a check on the normal functioning of a piece of nuclear counting

all aspects of the experiment are held as constant as possible. Because of the

application is generally more valuable and deals with the situation in which we

the topic. The confusion that often arises when the student is first introduced to -
counting statistics arisés more from a failure to keep separate the concepts:.
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characterization or organization of experimental data. We are not particularly
concerned where these data come from, but rather are interested only in
presenting the formal methods by which we can des-ribe the. amount of
fluctuation displayed by the data. In Section II, we will discuss the separate
topic of probabilistic ' mathematical models which can sometimes represent real
measurement systems. For purposes of the discussion in Section II, however, we
are concerned only with the structure and predictions of these models as
mathematical entities. We will reserve, until Section I11, the demonstration of
how the statistical models can be matched to experimental data, resulting in the
iwo common applications of counting statistics mentioned above. Finally, in
Section IV, we will examine how the predicted statistical uncertainties contribute

to the overall uncertainty in a numerical result which is calculated from'nuclear
counting data.

I. CHARACTERIZATION OF DATA '

We will begin by assuming that we have a collection of N independent
measurements of the same physical quantity: ;

}

Xp5Xps Xayeea XXy

We will further assume that a single typical value x; from this set can only
‘assume integer values'so that the data might represent, for example, a number of
successive readings from a radiation ¢ounter for repeated time intervals of equal
length. Two elementary properties of this data set are N ;

“Sum”™:

@

“Experimental mean”: X,=2/N 4-2)
The experimental mean is written with the subscript to distinguish it from the
mean of a particular statistical model which will be introduced later.

- It is often convenient to represent the data set by a corresponding frequency
distribution function F(x). The value of F(x) is the relative frequency with which
the number appears in the collection of data. By definition

Flx)= number of occurrences of the value “x”

4-3
number of measurements (= N) ,A )

The distribution is automatically normalized, that is,

F(x)=1
0
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TABLE 4-1. Example of Data Distribution Function
Data Frequency Distribution Function h

8 14 F3)=1/20 =0.05

5 8 F4) =0
12 8 F3) =0.05
10 3 F(6) =0.10
13 9 N =0.10
7 12 F(8) =0.20
9 6 F9) =0.10
10 10 F(10) =0.15
6 8 F(in =(.05
11 7 F(12) =0.10
F(13) =0.05
F(14) =0.05
> Fx) = 1.00

x=0

As long as we do not care about the specific sequence of the numbers, the
complete data distribution function F(x) represents all the information con-
tained in the original data set. .

For purposes of illustration, Table 4-1 gives a hypothetical set of data
consisting of 20 entries. Because these entries range from a minimum of 3 to a
maximum of 14, the data distribution function will have nonzero values only
between these extreme values of the argument x. The corresponding values of
F(x) are also shown in Table 4-1.

A plot of the data distribution function for the example is given in Fig. 4-1.
Also shown directly above the plot is a horizontal bar graph of the original 20
numbers from which the distribution was derived. These data show an experi-

" mental mean of 8.8, and the distribution function is in some sense centered

about that value. Furthermore, the relative shape of the distribution function
indicates qualitatively the amount of internal fluctuation in the data set. For
example, Fig. 4-2 shows the shape of the distribution functions corresponding to
two extreme sets of data: one with large amounts of scatter about the mean and
one with little. An obvious conclusion is that the width of the distribution
function is a relative measure of the amount of fluctuation or scattering about
the mean inherent in a given set of data.

It is possible to calculate the experimental mean by using the data distribution
function, because the mean of any distribution is simply its first moment

X, =

x -F(x) (4-5)
0
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FIGURE 4-1. Distribution function for the data given in Table 4-1.

It is also possible to derive another parameter, known as the sample variance,
which will serve to quantify the amount of internal fluctuation in the data set.
The first step is to define the deviation of any data point as the amount by which
it differs from the mean value

§=x,— X, (4-6)

To illustrate, the example of the 20 numbers given in Table 4-1 is shown as the
bar graph of Fig. 4-3a. The deviation of each of these values from the mean has
been separately plotted on part b of the figure. There must be an equal
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A narrow distribution
{little scatter about the mean)

A wide distribution
{large scatter about the mean)
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FIGURE 4-2.  Distribution functions. for two sets of data with differing amounts of
internal fluctuation.

contribution-of positive and negative deviations, so that
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If we take the square of each deviation, however, a positive number will always.
result. These are plotted for the example in Fig. 4-3c. We can now introduce the
sample variance s as

21 o
= D¢ 4-8
N-14 (+-8)

which will now serve as a single index of the degree of fluctuation inherent in
the original data. As long as the number of data entries N is reasonably large,
the sample variance is essentially the average value of the squared deviation of
each data point. To be precise, the sample variance is more fundamentally
defined as the average value of the deviation of each data point from the frue
mean value X which would be derived if an infinite number of data points were
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FIGURE 4-3.  Part (a) shows a plot of the data given in Table 4-1. Corresponding values
for the deviation ¢ and for € are shown in parts (b) and ().

accumulated

2 1 u =)2
s NENM_ Axmixv (4-9)

Because we cannot know ¥ from a finite set of measurements, we use instead
the value X, derived from the data set itself to calculate values for the deviations.
Use of the experimental, rather than true theoretical mean value, will tend to
reduce the average deviation and therefore result in a smaller than normal
variance. In statistical parlance, the number of degrees of freedom of the system
has been reduced by one, and the — 1 which appears in the denominator of Eq.
4-8 accounts for this self-minimizing effect.

‘The sample variance s* for the example of 20 numbers is shown graphically
on Fig. 4-3¢. Because it is essentially a measure of the average value of the
squared deviations of each point, s? is an effective measure of the amount of
fluctuation in the original data. A data set with a narrow distribution will have a
small typical deviation from the mean, and therefore the value for the sample
variance will be small.' On the other hand, data with a large amount of
fluctuation will have a wide distribution and a large value for typical deviations,
and the corresponding sample variance will also be large. It is important to note
that the sample variance is an absolute measure of the amount of internal scatter
in the data, and does not, to first approximation, depend on the number of
values in the data set. For example, if the data shown in Fig. 4-3 were extended
by simply collecting an additional 20 values by the same process, we would not
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expect the sample variance calculated for the extended collection of 40 numbers
to be substantially different from that shown in Fig. 4-3. «

We can also calcu'ate the sample variance directly from the data distribution
function F(x). Because Eq. 4-9 indicates that s? is simply the average value of
(x — X)* we can write that same average as

s2= Moa.éuis | (4-10)

Equation 4-10 is not introduced so much for its usefulness in computation as for
the parallel it provides to a similar expression, Eq. 4-17, which will be introduced
in a later discussion of statistical models. An expansion of Eq. 4-10 will yield the
well-known resuit

st= x2 — (%) (@-11)

We now end our discussion of the organization of experimental data with two
important conclusions:

1. Any set of data can be completely described by its frequency distribu-
tion function F(x).

2. Two properties of this frequency distribution function are of particular
interest: the experimental mean and the sample variance.

The experimental mean is given by Eq. 4-5 and is the value about which the
distribution is centered. The sample variance is given by Eq. 4-10 and is a
measure of the width of the distribution, or the amount of internal fluctuation in
the data.

. STATISTICAL MODELS

Under certain conditions, we can predict the distribution function that will
describe the results of many repetitions of a given measurement. We will define
a measurement as counting the number of successes resulting from a given
number of trials. Each trial will be assumed to be a binary process in that only
two results are possible: The trial is either a success or it is not a success. For
everything that follows, we will also assume that the probability of success is a
constant for all trials. )

To show how these conditions apply to real situations, Table 4-2 gives three
separate examples. The third example indicates the basis for applying the
theoretical framework that follows to the case of counting nuclear radiation
events. In this case a trial consists of observing a given radioactive nucleus for a
period of time ¢, the number of trials is equivalent to the number of nuclei in the
sample under observation, and the measurement consists of counting those
nuclei that undergo decay. We will identify the probability of success of any one
trial as p. In the case of radioactive decay, that probability is equal to (1 —e ™),
where A is the decay constant of the radioactive sample.

e o . R
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TABLE 4-2. Examples of Binary Processes

Definition of Probability of
Trial v Success Success=p
Tossing a coin “heads” 1/2
Rolling a &,o “a six” 1/6
Observing a given The nucleus decays l—e™™

radioactive nucleus
for a time ¢

during the observation

Three specific statistical models will be introduced:

1. The Binomial Distribution. This is the most general model and is widely
applicable to all constant-p processes. It is, unfortunately, computationally
cumbersome in radioactive decay where the number of nuclet is always very
large, and is used only rarely in nuclear applications. One example in which
the binomial distribution must be used is in the examination of data
acquired by counting a very short-lived radioisotope with high counting
efficiency. In this case the criteria for applications of the models which
follow are not met.

2. The Poisson Distribution. This model is a direct mathematical simplifica-
tion of the binomial distribution under conditions that the success probabil-
ity p is small. In practical terms, that condition implies that we have chosen
an observation time which is small compared with the half life of the
source, or that the detection efficiency is small. Then if we single out any
given radioactive nucleus, the probability that it results in a recorded count
in the observation time will be a very small number and the Poisson
distribution will apply.

3. The Gaussian or Normal Distribution. The third important distribution is
the Gaussian, which is a further simplification if the average number of
successes is relatively large (say greater than 20 or 30). That condition will
apply for any situation in which we accumulate more than a few counts
during the course of the measurement. This is most often the case so that
the Gaussian model is widely applicable to many problems in counting
statistics.

It should be emphasized that all the above models become identical for
processes with a small individual success probability p but with a large enough
number of trials so that the expected mean number of successes is large.

A. The Binomilal Distribution

The binomial distribution is the most general of the statistical models we will
discuss. If n is the number of trials for which each trial has a success probability
p, then the predicted probability of counting exactly x successes can be shown'
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P(x)=— n!

Ag.@xc -p)"* 4-12)

P(x) is the predicted probability distribution function as given by the binomial
distribution, and is defined only for integer values of » and x.

We will show one example of an application of the binomial distribution.
Imagine that we have an honest die so that the numbers 1 through 6 are all
equally probable. Let us define a successful roll as one in which any of the
numbers 3, 4, 5, or 6 appear. Because these are four of the six possible results,
the individual probability of success p is equal to £ or 0.667. We will now roll
the die a total of ten times and record the number of rolls that result in success
as defined above. The binomial distribution will now allow us to calculate the
probability that exactly x out of the ten trials will be successful, where x can
vary between 0 and 10. Table 4-3 gives the values of the predicted probability
distribution from Eq. 4-12 for the parameters p=2 and n=10. The results are
also plotted in Fig. 4-4. We see that 7 is the most probable number of successes

0.25
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x

FIGURE 4-4. A plot of the binomial distribution for p=2/3 and n=10.
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TABLE 4-3. Values of the Binomial Distribution for
the Parameters p=4/6 or 2/3,n =10

X P(x)

0.00002
0.00034
0.00305
0.01626
0.05690
0.13656
0.22761
0.26012
0.19509
0.08671
0.01734

SW®NAUEWN—O

S P(x)=1.00000
x=0

from the ten rolls of the die, with a probability of occurrence slightly greater
than 1 out of 4. From the value of P(0) we see that only twice out of 100,000 tests
would we expect to see no successes from ten rolls of the die.

Some properties of the binomial distribution are important. First, the distribu-
tion is normalized

2 P(x)=1 (4-13)
Also we know that the average or mean value of the distribution is given by
¥= 2 x-P(x) (4-14)
x=0

If we now substitute Eq. 4-12 for P(x) and carry out the summation, a
remarkably simple result is derived

I=pn (4-15)

Thus we can calculate the expected average number of successes by multiplying
the number of trials # by the probability p that any one trial will result in a
success. In the example just discussed, we calculate an average number of
successes as:

wiro

w,uu.czuA vﬁovum.@'\ (4-16)

* 06
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The mean value is obviously a very fundamental msa important property of any
predicted distribution.

It is also important to derive a single parameter which can describe the
amount of fluctuation predicted by a given distribution. We have already
defined such a parameter, called the sample variance, for a set of experimental
&zm as defined in Eq. 4-10. By analogy we will now define a predicted variance
o2 which will be a measure of the scatter about the mean predicted by »mvno_:n
statistical model P(x)

1= M (x—x)%P(x) (4-17)

Conventionally, o is called the variance, and we will emphasize the fact that it
is associated with a predicted probability distribution function by calling it a
predicted variance. It is also conventional to define the standard deviation as the
square root of 2 Recall that the variance is in some sense a typical value of the
squared deviation from the mean. Therefore, o represents a typical value for the
deviation itself, hence the name “standard deviation.”

Now if we carry out the summation indicated in Eq. 4-17 for the specific case
of P(x) given by the binomial distribution, the following result is obtained:

o?=np(1-p) (4-18)

Because X=np, we can also write

o?=5x(1-p) (4-19)

=Vz(1-p) (4-20)

We now have an expression which will give an immediate prediction of the
amount of fluctuation inherent in a given binomial distribution in terms of the
basic parameters of the distribution, n and p, where X = np.

To return to the example of rolling a die given earlier, we defined success in
such a way that p=2. We also assumed 10 rolls of the die for each measurement
so that n=10. For this example, the predicted mean number of successes is 6.67
and we can proceed to calculate the predicted variance

o%=np(1—p) =(10)(0.667)(0.333) =2.22 (4-21)

* By taking the square root we get the predicted standard deviation:

o=Vo? =V272 =149 (4-22)

The significance of the standard deviation is illustrated in Fig. 4-4. The mean
value of the distribution is shown as the dashed line, and one value of the
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standard deviation is shown on either side of this mean. Because o is a typical
value for the difference between a given measurement and the true value of the
mean, wide distributions will have large values for ¢ and narrow distributions
will correspond to small values. The plot illustrates that the association of o with
the width of the distribution is not inconsistent with the example shown in Fig,.
4-4.

B. The Poisson Distribution

Many categories of binary processes can be characterized by a low probability
of success for each individual trial. Included are most nuclear counting experi-
ments in which large numbers of nuclei (on the order of Avogadro’s number)
make up the sample or number of trials, whereas a relatively small fraction of
these give rise to recorded counts. Similarly in a nuclear beam experiment, many.
nuclear particles from an accelerator might strike a target for every one recorded
reaction product, Under these conditions the approximation that p<1 will hold
and some mathematical simplifications can be applied to the binomial distribu-
tion. It can be-shown? that in this limit the binomial distribution reduces to the
form

_ (pn)y’e ™
WA.KV = llllkl_l‘. A&-va
Because pn=x holds for this distribution as well as for the parent binomial
distribution, - ©f
N \@ W X (x-x)
play= w : W,f ——(4-24)
X. ,x, X \ /\\ ('S

which is now the familiar form of the Poisson distribution.

Recall that the binomial distribution requires values for two parameters: the
number of trials #n and the individual success probability p. We note from Eq.
4-24 that a significant simplification has occurred in deriving the Poisson
distribution—only one parameter is required which is the product of » and p.
This is a very useful simplification because now we need only know the mean
value of the distribution in order to reconstruct its amplitude at all other values
of the argument. That is a great help for processes in which we can in some way
measure or estimate the mean value, but for which we haven’t the slightest idea
of either the individual probability or the size of the sample. Such is usually the
case in nuclear measurements.

Some properties of the Poisson distribution follow directly. First, it is also a
normalized distribution, or .

W P(x)=1 L (4-25)
x =0

\& %x m -
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We can also calculate the first moment or mean value of the distribution:
n
= 3 xP(x)=pn (4-26)
x=0

which is the intuitively obvious result also obtained for the binomial distribu-
tion. The predicted variance of the distribution, however, differs from that of the
binomial and can be evaluated from our prior definition

o’= M= (x—%)*P(x)=pn (4-27)
x=0

or noting the result from Eq. 4-26
ol=x (4-28)

The predicted standard deviation is Jjust the square root of the predicted
variance, or

o=Vx (4-29)

Thus we see that the predicted standard deviation of any Poisson distribution is
Just the square root of the mean value which characterizes that same distribu-
tion. Note that the corresponding result obtained earlier for the binomial
distribution (Eq. 4-20) reduces to the above result in the limit of p<1 already
incorporated into the Poisson assumptions.

We will again illustrate with an example. Suppose we randomly select a group
of 1000 people and define our measurement as counting the number of current
birthdays found among all members of that group. The measurement then
consists of 1000 trials, each of which 1S a success only if a particular individual
has his or her birthday today. If we assume a random distribution of birthdays,
then the probability of success p is equal to 1/365. Because p is much less than
one in this example, we can immediately turn to the Poisson distribution to
evaluate the probability distribution function which will describe the expected
results from many such samplings of 1000 people. Thus, for our example,

I

P= 3¢5 =0.00274 X=pn=274
n=1000 o=Vx =166
P(x)= e F _ (QQ74ye 2

x! x!

® ¢ -
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P(x)
0.064
0.177
0.242
0.221
0.152
0.083
0.038
0.014

.

!
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Recall that P(x) gives the predicted probability that exactly x birthdays will
be observed from a random sampling of 1000 people. The numerical values are
plotted in Fig. 4-5 and show that x=2 is the most probable result. The mean
value of 2.74 is also shown in the figure, together with one value of the standard
deviation of 1.66 on either side of the mean. The distribution is roughly centered
about the mean value, although considerable asymmetry is evident for this low
value of the mean. Again the size of the standard deviation gives some indica-
tion of the width of the distribution or the amount of scatter predicted by the
distribution.

Pix)

=

'FIGURE 4-5. The Poisson distribution for 2 mean value ¥=2.74,
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C. The Gaussian or Normal Distribution :

The Poisson distribution holds as a mathematical simplification to the binomial
distribution in the limit p<1. If, in addition, the mean value of the distribution
is large (say greater than 20) azdditional simplifications can generally be carried
out? which lead to the Gaussian distribution:

]
V2nx

This is again a pointwise distribution function defined only for integer values of
x. It shares the following properties with the Poisson distribution:

P(x)= nxvﬁl?lm%\mﬁ (4-30)

o0
1. Itis normalized: > P(x)=1

x=0
2. The distribution is characterized by a single parameter ¥, which is
given by the product np.

3. The predicted variance 62 as defined in Eq. 4-17 is again equal to the
mean value X.

We can again illustrate an example of a physical situation in which the
Gaussian distribution is applicable. Suppose we return to the previous example
-of counting-birthdays out of a group of randomly selected individuals, but now
consider a much larger group of 10,000 people. For this example, muwww and
n=10,000, so the predicted mean value of the distribution ¥ = np =27.4. Because
the predicted mean is larger than 20, we can turn to the Gaussian distribution
for the predicted distribution of the results of many measurements, each of
which consists of counting the number of birthdays found in a different group of
10,000 people. The predicted probability of observing a specific count x is then
given by

1 (x—27.4)°
P(x)=———e""0s (4-31)

V27(274)

and the predicted standard deviation for the example is:

o=VX =V7374 =523 (4-32)

These results are shown graphically in Fig. 4-6a4.

‘_,Eo::vozm_:ovmnnﬁwsonmom:.gEmanm:Em vomamvoczwo@m:w&mz
distribution: .

L The distribution is symmetric about the mean value %. Therefore P(x)
depends only on the absolute value of the deviation of any value x from
the mean, defined as e=|x - x|.

%
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FIGURE 4-6.  Part (a) shows the discrete Gaussian distribution for a mean value ¥=27.4.
Part (b) is a plot of the corresponding continucus form of the Gaussian.

2. Because the mean value ¥ is large, values of P(x) for adjacent values
of x are not greatly different from each other. In other words, the
distribution is slowly varying.

These two observations suggest a recasting of the distribution as an explicit
function of the deviation € (rather than of x) and as a continuous function
(rather than a pointwise discrete function). These changes are accomplished by
rewriting the Gaussian distribution as

(4-33)

where G(e)de is now defined as the differential probability of observing a
deviation in de about €. Furthermore, because o = V¥ :

G(e)= 2 - (4-34)

nX

i
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Comparing Eq. 4-33 with Eq. 4-30, we note a factor of two which has entered in
G(¢) because there are two values of x for every value of the deviation e.

Figure 4-6b shows the continuous form of the Gaussian distribution for the
same example chosen to illustrate the discrete case. Comparing Fig. 4-6a and
4-6b, the scale factors for each abscissa are the same but the origin for Fig. 4-6b
has been shifted to illustrate that a value of zero for the deviation e corresponds
to the position of the mean value ¥ on Fig. 4-6a. If a factor two difference in the
relative ordinate scoles is included as shown, then the continuous distribution
G(e) represents the ..a00th curve which connects the pointwise values plotted in
Fig. 4-6a.

Because we are now dealing with a continuous function, we must redefine
some properties of the distribution as shown in Fig. 4-7. It should be particularly
noted that quantities of physical interest now involve integrals of the distribution
between set limits, or areas under the curve, rather than sums of discrete values.

Referring to Eq. 4-34, it is evident that the value of the exponential factor in
the distribution depends only on the ratio of € to o. Therefore, all Gaussian
curves (regardless of the value of ¥ or o) will have the same shape provided the
scale factor for the deviation ¢ is chosen in units of the standard deviation o.
This universal curve is illustrated in Fig. 4-8.

From the definitions given in Fig. 4-7, the probability that a typical deviation
€ predicted by a Gaussian distribution will be less than a specific value ¢, is
given by the integral [G(e)de=f(¢,). The value of this integral is illustrated by
the shaded area in Fig. 4-8. Provided € is chosen in units of the standard
deviation o, f(¢;) becomes independent of all other parameters of the distribu-
tion and will be a universal property of all Gaussian distributions. Tabular
values for f(e;) can be found in most collections of statistical tables, and some
selected entries are shown in Table 4-4. This function gives the probability that a
random sample from a Gaussian distribution will show a deviation from the true
mean value which is less than the assumed value of €. For example, we can
conclude that 68.3 percent of all samples will deviate from the true mean by less
than one value of the standard deviation.

TABLE 44, Probability of Occurrence of Given
Deviations Predicted by the Gaussian Distribution

€o Ko
0 0

0.674 o 0.500
g 0.683

1.64 0 0.900

1960 0.950

2.58¢ ‘ 0.990

3006 0.997
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Bt:.' APPLICATIONS OF STATISTICAL MODELS

The first two sections of this chapter have dealt with independent topics: the
organization of experimental data in Section I, and the structure of certain
statistical models in Section II. The practical uses of statistical analysis will now
be illustrated by bringing together these two separate topics.

There are two major applications of counting statistics in nuclear measure-
ments. The first of these we will call “Application A” and involves the use of
statistical analysis to determine whether a set of multiple measurements of the
same physical quantity shows an amount of internal fluctuation ahich is
consistent with statistical predictions. The usual motivation here is to determine
whether a particular counting system is functioning normally. Although this is a
useful application, a far more valuable contribution of counting statistics arises
in situations in which we have only a single experimental measurement. In
“Application B” we will examine the methods available to make a prediction
about the uncertainty one should associate with that single measurement to
account for the unavoidable effects of statistical fluctuations.

Application A
Checkout of the counting system to see if observed fluctuations are
consistent with expected statistical fluctuation.

A common quality control procedure in many counting laboratories is to
periodically (perhaps once a month) record a series of 20 to 50 successive
counts from the detector system while keeping all experimental conditions
as constant as possible. By applying the analytical procedures to be
described here, it can be determined whether the internal fluctuation
shown by these multiple measurements is consistent with the amount of
fluctuation expected if statistical fluctuations were the only origin. In this
way abnormal amounts of fluctuation can be detected which could indi-
cate malfunctioning of some portion of the counting system.

Figure 4-9 shows the chain of events that characterizes this application .
of counting statistics. Properties of the experimental data are confined to
the left half of the figure, whereas on the right-hand side are listed
properties of an appropriate statistical model. We start in the upper left
corner with the collection of N independent measurements of the same
physical quantity. These might be, for example, successive one-minute
counts from a detector. Using the methods outlined in Section I, we can
characterize the data in several ways. The data distribution function F(x)
as defined in Eq. 4-3 can be compiled. From this distribution, the mean
value X, and the sample variance s? can be computed by the formulas
given in Egs. 4-5 and 4-10. Recall that the mean value X, gives the value
about which the distribution is centered, whereas the sample variance s? is
a quantitative measure of the amount of fluctuation present in the collec-
tion of data.
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Experimental data Statistical model

Set of N data points
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FIGURE 4-9.  An illustration of “Application A” of counting statistics—the inspection of
a set of data for consistency with a statistical model.

We now are faced with the task of matching these experimental data with
an appropriate statistical model. Almost universally we will want to match
to either a Poisson or Gaussian distribution (depending on how large the
mean value is), either of which is fully specified by its own mean value x.
What should we choose for ¥7 We would be rather foolish if we chose any
value other than X,, which is our only estimate of the mean value for the
distribution from which the data have been drawn. Setting ¥ = X, then
provides the bridge from left to right in the figure, so that we now have a
fully specified statistical model. If we let P(x) represent the Poisson or
Gaussian distribution with ¥=1X,, then the measured data distribution
function F(x) should be an approximation to P(x) provided the statistical
model accurately describes the distribution from which the data have arisen.
One method of carrying out a comparison at this level is simply to make a
superimposed plot of F(x) and P(x) and then to compare the shape and
amplitude of the two distributions.

But such a comparison of two functions is, as yet, only qualitative. It is
desirable to extract a single parameter from each distribution so that they
can be compared quantitatively. The most fundamental parameter is the
mean value, but these have already been matched and are the same by
definition. A second parameter of each distribution is the variance, and we
can carry out the desired quantitative comparison by noting the predicted
variance o? of the statistical model and comparing with the measured



FIGURE 4-10.
predictions of a statistical model (the Poisson distribution for X=838).

W S U

124 ; INTROL _CTiON

-

+“sample variance s* of the collection of data. If the data are actually
characterized by the statistical model and show a degree of internal
fluctuation which is consistent with statistical prediction, these two vari-
ance values should be about the same. We will introduce the “Chi-squared
test” as a systematic way of carrying out this comparison from which
quantitative conclusions can be drawn.

To illustrate the direct comparison of the data distribution function with
the predicted probability distribution function, we will return to the
example of data given in Table 4-1. In Fig. 4-10 the data distribution
function has been replotted as the solid vertical bars. The mean value for
these data was calculated to be X, =8.8, so the transition to the appropriate
statistical model will be made by assuming its mean value to be ¥=38.8.
Because the mean value is not large, we are prohibited from using the
Gaussian distribution and we will therefore use the Poisson as the assumed
statistical model. The points on Fig. 4-10 are the values of the predicted
distribution function of the Poisson distribution for a mean value of 8.8,
Because the Poisson is defined only for discrete values of x, the continuous
curve is drawn only to connect the points for visual reference.

At this point a comparison of the two distributions is difficult. Because
relatively little experimental data was gathered (20 measurements) the
value of F(x) at each point is subject to rather large fluctuations. One

0.20
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P(x) or F(x)

0.10

0.05

A direct comparison of experimental data (from Table 4-1) with
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would expect that, if more data were gathered, the fluctuations would
diminish and the data distribution function F(x) would adhere more and
more closely to the predicted probability distribution function P(x), pro-
vided the data are indeed a true sample from the predicted statistical model.
From Fig. 4-10 we can only say that the experimental data are not grossly at
variance with the prediction.

To take the comparison one step further, we would now like to inter-
compare the value of the sample variance and the predicted variance from
the statistical model. The sample variance calculated from Egq. 4-8 for the
same set of data is found to be

s2=1736

Because the assumed statistical model is the Poisson distribution, the pre-

dicted variance is given by

0’=x=28.80

These two results show that there is less fluctuation in the data than would
be predicted if the data were a perfect sample from a Poisson distribution
of the same mean. With a limited sample size, however, one would not
expect these two parameters to be precisely the same and a more quantita-
tive test is required to determine whether the observed difference is really
significant. This function is provided by the “Chi-squared test.”

Chi-squared is simply another parameter of the experimental data dis-
tribution and is defined as

i

(4-35)

1 & )
X'=—= M A.ﬁl‘ﬂ.v»
o i=1

X,

et

where the summation is taken over each individual data point x,. Chi-
squared is closely related to the sample variance and the two are related by

2 (N—1)s?

.x.w

X (4-36)

Now if the amount of fluctuation present in the data is closely modeled by
the Poisson distribution, then s>=¢?%. But we know that for the Poisson
distribution. o®= ¥. Furthermore, we have chosen % to be equal to X,.
Therefore, the degree to which the ratio s?/% deviates from unity is a
direct measure of the extent to which the observed sample variance differs
from the predicted variance. Now referring to Eq. 4-36, the degree to
which x? differs from (N —1) is a corresponding measure of the departure

of the data from predictions of the Poisson distribution. Chi-squared
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" TABLE4-5. Portion of a Chi-Squared Distribution Table
Statistical
*  Degrees of No. of
Freedom Measurements N~ p=0.38 0.7 0.6 0.5
18 19 12.85 14.44 15.89 17.33
19 20 , 13.72 15.35 16.85 18.33
20 21 14.58 1626- 17.80 19.34

distribution tables may be found (e.g., Ref. 3) which are generally cast in
the form shown in Table 4-5. The column on the left indicates the number
of statistical degrees of freedom in the system. (This is one less then the
number of independent measurements used to derive the value of x2
because X, has been calculated from the same set of data.) Each column in -
the table is headed by a specific value of p, defined as the probability that
a random sample from a true Poisson distribution would have a larger
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FIGURE 4-11. A plot of the Chi-square distribution. For each curve, p gives the
probability that a random sample of /N numbers from a true Poisson distribution would have
a larger value of x*/» than that of the ordinate. For data for which the experimental mean
is used to calculate 2, the number of degrees of freedom y=N—1.
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value of x? than the specific value shown in the table. Very low probabili-
ties (say less than 0.02) indicate abnormally large fluctuations in the data,
whereas very high probabilities (greater than 0.98) indicate abnormally
small fluctuations. A perfect fit to the Poisson would yield a probability of
0.50, whereas the somewhat arbitrary limits listed above indicate situations
in which the counting system may be displaying either abnormally large
fluctuations (which is the usual type of malfunction) or data that is too
regular a: 1 shows abnormally small fluctuations. Figure 4-11 gives a plot
of the x* uistribution for a wider range of the parameters involved.

For the illustrative example given above, we calculate a x? value of 15.89.
From Table 4-5 for N=20 we find (by interpolation) a value of p=0.66.
Because that probability is neither very large nor very small, we would
conclude that the equipment used to generate the set of numbers originally
shown does not give rise to abnormal fluctuations.

Application B

Estimation of the precision of a single measurement.

A more valuable application of counting statistics applies to the case in
which we have only.a single measurement of a particular quantity, and
wish to associate a given degree of uncertainty with that measurement. To
state the objective in another way, we would like to have some estimate of
the sample variance to be expected if we were to repeat the measurement
many times. The square root of the sample variance should be a measure
of the typical deviation of any one measurement from the true mean value,
and thus will serve as a single index of the degree of precision one should
associate with a typical measurement from that set. Because we have only
a single measurement, however, the sample variance cannot be calculated
directly but must be estimated by analogy with an appropriate statistical
model.

The process is illustrated in Fig. 4-12. Again, the left half of the figure
deals only with experimental data, whereas the right half deals only with
the statistical model. We start in the upper-left corner with a single
measurement, “x”. If we make the assumption that the measurement has
been drawn from a population whose theoretical distribution function is
predicted by either a Poisson or Gaussian distribution, then we must
match an appropriate theoretical distribution to the available data. For
either model we must start with a value for the mean X of the distribution.
Because the value of our single measurement “x” is the only information
we have about the theoretical distribution from which it has been drawn,
we have no real choice other than to assume that the mean of the
distribution is equal to the single measurement, or X¥=x. Having now
obtained an assumed value for X, the entire predicted probability distribu-
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FIGURE 4-12.  An illustration of “Application B” of counting statistics—prediction of

the precision to be associated with a single measurement.

tion function P(x) is defined for all values of x. We can also immediately
find a value for the predicted variance o2 of that distribution. We can then
use the association that, if the data are drawn from the same distribution, an
estimate of the sample variance s? of a collection of such data should be
given by o®. Through this process we have therefore obtained an estimate
for the sample variance of a repeated set of measurements that do not
exist, but which represent the expected results if the single measurement
were to be repeated many times.
The conclusion we reach can then be stated as follows:

The expected s? of the statistical

sample variance model from which we
think the measurement
“x” is drawn

i
Q

It
=

provided the model is
either Poisson or
Gaussian

i
=

because “x” is our only
measurement on which
to base an estimate

of ¥
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We therefore conclude that

Vs? =o=Vx

is our best estimate of the deviation from the true mean which should bpify
our single measurement “x”. .

This conclusion can be stated somewhat more quantitatively provided
the assumed probability distribution function is a Gaussian (x is large).
Then the range of values x*+ o or x+Vx will contain the true mean X
with 68 percent probability. This conclusion follows directly from earlier
statements about the shape of the Gaussian curve. It is conventional to
quote the uncertainty or “error” of a single measurement as simply one
value of the standard deviation o. If we quote a larger uncertainty, then the
probability of including the true mean within the quoted interval is
increased, and vice versa.

To illustrate, assume we have a single measurement x = 100. Then

o=Vx =V100 =10

Because our best estimate of the mean value of the distribution from which
this measurement was drawn (the measurement itself) is large, we can
assume that the parent distribution is a Gaussian. From the shape of the
Gaussian curve (see Table 4-4) we can then construct Table 4-6 for the
specific example. The table gives various options available in quoting the
uncertainty to be associated with our single measurement. The conven-
tional choice is to quote the measurement plus or minus one value of the
standard deviation o, or 100+10. This interval is expected to contain the
true mean value X with a probability of 68 percent. If we wish to increase
the probability that the true mean is included, we can do so only by
expanding the interval or error associated with the measurement. For
example, to achieve a 99 percent probability that the true mean is in-
cluded, the interval must be expanded to 2.58 o, or the range 100+ 25.8 for
our example. Unless otherwise stated, the errors quoted with a particular
nuclear measurement normally represent one standard deviation.

TABLE 4-6. Examples of Error Intervals for a Single Measurement x = 100
Probability that the

582& true mean x is included
x+.670 93.3-106.7 50%
xto 90 -110 68%
x*1.640 83.6-116.4 90%

x*2580 74.2-125.8 99%
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FIGURE 4-13. A graphical display of “error bars” associated with experimental data.

The fractional standard deviation, defined as o/ x, of a simple counting
measurement is given by Vx /x, or 1/Vx . Thus the total number of
recorded counts x completely determines the fractional error to be
associated with that measurement. If 100 counts are recorded, the fractional
standard deviation is 10 percent, whereas it can be reduced to 1 percent
only by increasing the total counts recorded to 10,000. For events occurring
at a constant rate, this relationship implies that the time required to achieve
a given fractional error will increase as the inverse square of the desired
statistical precision.

When a set of measurements is presented graphically, the estimated
errors associated with each measurement are often also displayed on the
same graph. Figure 4-13 gives a hypothetical set of measurements of a
quantity x as a function of some other variable or parameter s. The
measured data are presented as points, whereas the error associated with
each point is indicated by the length of the “error bar” drawn around each
point. It is conventional to show the length of the error bar equal to one
value of o on either side of the point, or the total length of the error bar
equal to 2o0. Under these conditions, if one were to attempt a fit of an
assumed functional behavior x=f(s), the fitted function should pass
through 68 percent (or roughly two-thirds) of all the error bars associated
with the data. )

Caution N

All the conclusions we have drawn apply only to a measurement of a
number of successes (number of heads in coin tosssing, number of birth-
days, etc.). In radioactive decay or nuclear counting, we may directly apply
o6=Vx only if x represents a counted number of successes, that is, a
number events over a given observation time recorded from a detector.

« ¢ ,

(
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The vast majority of mistakes made in the use of counting statistics results
from the misapplication of the above relationship. .

One cannot associate the standard deviation ¢ with.-the square root of
any quantity which is not a directly measured number of counts. For
example, the association does not apply to:

1. counting rates

2. sums or differences of counts
u.nc@nw&.o:saanganaoocim
a.

any derived quantity.

In all these cases the quantity is calculated as a function of the number of
counts recorded in a given experiment. The error to be associated with that
quantity must then be calculated according to the methods outlined in the
next section.

iv. ERROR PROPAGATION

In a typical nuclear measurement, one is seldom interested in the unprocessed
data consisting of the number of counts over a particular interval. More often
the data are processed through multiplication, addition, or other functional
manipulation to arrive at a derived number of more direct interest. We must
then be concerned with the manner in which the error associated with the
original number of counts propagates through these calculations and is reflected
as a corresponding uncertainty in the derived quantity. It can be shown?® that if
the errors are individually small and symmetric about zero, a general result can
be obtained for the expected error to be associated with any quantity which is
calculated as a function of any number of independent variables. If x,y,z,... are
directly measured counts or related variables for which we know 0,,0,,0,,.
then the standard deviation for any quantity » derived from these counts can be
calculated from

m:N mzu m:N
u”lllu I|~.II~...
a A vax+Amkv@+Avaow+ ?«.ud

where u=u(x,y,z,...) represents the derived quantity. Equation 4-37 is gener-
ally known as the error propagation formula and is applicable to almost all
situations in nuclear measurements. The variables x,y,z,..., however, must be
chosen so that they are truly independent in order to avoid the effects of
correlation. The same specific count should not contribute to the value of more
than one such variable. The use of Eq. 4-37 can be illustrated by application to
some simple cases.
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€Cas= 1. Sums or Differences of Counts ; Thus

If we define

Q=H4\am+aw =Vx+y =V1592 =399

u=x+y or u=x-y

then We would then quote the result plus or minus one standard deviation as
net counts=550+39.9
du _ I and L +1
ox ay
Case 2. Muiltiplication or Division by a Constant
Application of Eq. 4-37 yields P y

If we define
o2=(1)%e2+4(= 1)’s2

u=Ax
or where A4 is a constant (no associated uncertainty), then
T3 du
0, =\l (4-38) A
A common application of this case arises when counts due to a radioac- and application of Eq. 4-37 gives
tive source must be corrected by subtracting an appropriate background
count. If we assume equal counting times, then 0,= Ao, (4-39)
net counts =total counts—background counts o i
Similarly, if
or X
v= =
U=x-y B

. , where B is also a constant, then
Because both x and p are directly measured numbers of counts (or

successes), the expected standard deviation of each is known to be its own . a,
square root. The object is to deduce the expected standard deviation of the 9%.=7F (4-40)
net counts, a derived number. Because a simple difference is involved, the
answer will be given by Eq. 4-38.

. at, in either case, the final “fractional error” (6, /u or 6. /v) is the
To illustrate .3 cxamp le, suppose we have recorded the following data “MM Mw% 9_@5 MMME% ?m,omosm_ error (0, /x). As 2% &Mca axW\anw intui-
for equal counting times tively, multiplying or dividing a value by a constant does not change its
total counts = x=[071 relative error. . . .
background counts =y= 521 A familiar example of the above case is the calculation of a counting
then —— rate. If x counts are recorded over a time ¢, then
net counts =u= 550 x

counting rate=r= ﬂ .
We know a priori

The usual assumption is that the time is measured with very small

o,=Vx = V1071 uncertainty, so that ¢ can be considered a n.oﬁ::.:. Then Eq. &L.S can be
used to calculate the expected standard deviation in r corresponding to the
9= /\H =V3521 known standard deviation in the number of counts x.



»"As an example, suppose

x==1120 counts and 7 =35 seconds
Then .

Therefore, the counting rate is

r=3224+6.7 counts per second

Case 3. Multiplication or Division of Counts

For the case

u=xy, — =

2,0y,2.2 2,2
o,=y Qk+¢x.0”v.

Dividing both sides by u®= x2y?

Similarly, if

-

:4—.%00% (&OZ

(4-41)
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Again, dividing both sides by u?= -

<

-] e

Thus, for either u=xy or u=x/y, the fractional errors in x and y (o./x
and ¢, /y) combine in quadrature sum to give the fractional error in u.

As an example, suppose we wish to calculate the ratio of two source
activities from independent counts taken for equal counting times (back-
ground is neglected). Assume

Counts from source D =N, = 16265
Counts from source @=N,= 8192
N, 16265

From Eq. 4-41’

and multiplying by the value of R
o, =0.027
Therefore, the reported result would be:

R=1.9852+0.027

Case 4. Mean Value of Multiple Independent Counts

Suppose we have recorded N repeated counts from the same source for
equal counting times. Let the results of these multiple counts be designated
X1y Xp,...Xy and their sum be ¥. Then

S=x+x+...xy

(33
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If we formally apply the error propagation formula (Eq. 4-37) to find the
expected error in X, we find 3% /0x;=1 for all independent counts x;, and
therefore,

224 2 2
oy=0, to +..0

But because o, = Vx; for each independent count,

f=x+x+..xy=2

03=VE

This result shows that the standard deviation expected for the sum of all
the counts is the same as if the measurement had been carried out by
performing a single count, extending over the entire period represented by
all the independent counts.

Now if we proceed to calculate a mean value from these N independent
measurements,

(4-42)

2
N

X =

(4-43)
Equation 4-43 is an example of dividing an error-associated quantity (2) by
a constant (N). Therefore, Eq. 4-40 applies and the expected standard

deviation of this mean value is given by

o, =0y /N=VE /N=VNI /N

o, =

X
X a Akcﬁv

Note that the expected standard deviation of any single measurement x;
1S

o, =Vx;

Because any typical count will not differ greatly from the mean, x;=Xx, and
we therefore conclude that the mean value based on N independent counts
will have an expected error which is smaller by a factor VN compared
with any single measurement. on which the mean is based. A general
conclusion is that, if we wish to improve the statistical precision of a given
measurement by a factor of two, we must invest four times the initial
counting time.
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Case 5. Comblnatlon of independent Measurements with Unequal Errors

If N independent measurements of the same quantity have been car-
ried out and they do not all have nearly the same associated precision,
then a simple average (as discussed in Case 4) no longer is the optimal way
to calculate a single “best value.” We will instead want to give more weight
to those measurements with small values for o, (the standard deviation
associated with x;) and less weight to measurements for which this esti-
mated error is large.

Let each individual measurement x; be given a weighting factor g; and
the “best value” (x> computed from the linear combination

(4-45)

We will now seek a criterion by which the weighting factors a; should be
chosen in order to minimize the expected error in {x).
For brevity, we will write

Ml

«

N

M a;
i=1
so that

_ 2
(x)=— M a;X;
a /=

Now apply the error propagation formula (Eq. 4-37) to this case:

2
Oixy

i
M=
—
(=3}
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N
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(4-46)
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In order to minimize o,,, we must minimize o’,, from Eq. 4-46 with
respect to a typical weighting factor g;

) QN% !NQE@W
907, da; da;
0= = (4-47)
da; at
Note that
da _ 1 /1 =240
da; a 7
Putting these results into Eq. 4-47
&ANQM@&.IN%TO
o v
and solving for a;
_B.1
If we choose to normalize the weighting coefficients
N
M a=oa=1
i=1
_B
v
Putting this into the definition of 8
N ¥g 2
B= 2 aloi= 2|5 of
i=1 Coi=1\ 0} '
or
N — -1
B=| 2 = (4-49)
i=1 0} ,

’ . " X - 4 #
£ . z% . . o . ) e
& % .
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Therefore, the proper choice for the normalized weighting coefficient for X;
is

=3
I,

PERRE RN (4-50)

We therefore see that each data point should be weighted inversely as the
square of its own error.

Assuming that this optimal weighting is followed, what will be the
resultant (minimum) error in {x)>? Because we have chosen a=1 for
normalization, Eq. 4-46 becomes

2
QQvl%

In the case of optimal weighting, 8 is given by Eq. 4-49. Therefore,

L_$ L (4-51)

QM.XV i=1 0

From Eq. 4-51, the expected standard deviation g, can be calculated
from the standard deviations o, associated with each individual measure-
ment.

V. OPTIMIZATION OF COUNTING EXPERIMENTS

(14

The principle of error propagation can be applied in the design of counting
experiments to minimize the associated statistical uncertainty. To illustrate,
consider the simple case of measurement of the net counting rate from a
long-lived radioactive source in the presence of a steady-state background.

Define the following:

§ =counting rate due to the source alone without background
B =counting rate due to background

The measurement of § is normally carried out by counting the source plus
background (at an average rate of S+ B) for a time T, ,, and then counting

background alone for a time 7. The net rate due to the source alone is then

N, N,

S=
Tsyp Ty

where N, and N, are the total counts in each measurement.

-2 (4-52)
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Applying the results of error propagation analysis to Eq. 4-52
. H.A N, VN+AMRN.V~ 1/2
s i Tssn Ty
I 2~ ZN 1/2
Qh = 3 -+ .II.No
| Tses  T;
[ S+B B/
Og=| ——+ — 4-53)
% Toen ' T (

If we now assume that a fixed total time 7= T, , + T} is available to carry out
both measurements, the above uncertainty can be minimized by optimally
choosing the fraction of T allocated to Ty, 5 (or Tp). We square Eq. 4-53 and
differentiate

S+ B B
205dog=— "= dTs, ,— — dT,
T3, 0 T3

and set dog=0 to find the optimum condition. Also, because 7 is a constant;

dTs, p+dTy=0. The optimum division of time is then obtained by meeting the
condition

.wa S+ B

T, B

opt

(4-54)

A figure of merit which can be used to characterize this type of counting
experiment is the inverse of the total time, or 1/7, required to determine S to
within a given statistical accuracy. If certain parameters of the expériment (such
as detector size, pulse acceptance criteria, etc.) can be varied, the optimal choice
should correspond to maximizing this figure of merit.

In the following analysis, we will assume that the optimal division of counting
times given by Eq. 4-54 is chosen. Then we can combine Egs. 4-53 and 4-54 to
obtain an expression for the figure of merit in terms of the fractional standard
deviation of the source rate, defined as e=ag/S

rm.N
2
) (VS+B +VB)*

1
3= (4-55)

It is instructive to examine two extreme cases in the application of this result. If
the source-induced rate is much greater than the background, §> B and Egq.
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4-55 reduces to

-wl, =¢’S (4-56)
In this limit, the statistical influence of background is negligible. The figure of
merit 1/7 is maximized simply by choosing all experiment parameters to
maximize S, or the rate due to the source alone.

The opposite extreme of a small source rate in a much larger background
(S« B) is typical of low-level radioactivity measurements. In this case, Eq. 4-55
reduces to

el (4-57)

For such applications, the figure of merit is maximized by choosing experimen-
tal conditions so that the ratio S?/B is maximized. As an example of the
application of Eq. 4-57, assume that changing the detector configuration in a
low-level counting experiment increases the rate due to the source alone by a
factor of 1.5, but also increases the background by a factor of 2.0. The ratio
S?/ B is then (1.5)*/2.0=1.125 times its former value. Because this ratio exceeds
unity, the change will slightly improve the overall statistical accuracy of the net
source rate determination if the total measurement time is held constant.

VI. DISTRIBUTION OF TIME INTERVALS
The time intervals separating random events are often of practical interest in
nuclear measurements. We will present some results which apply to any random
process characterized by a constant probability of occurrence per unit time. In
most cases, these results will adequately describe the behavior of a radiation
detector undergoing irradiation by a steady-state or long-lived radiation source.
In' the following discussion, r will represent the average rate at which events
are occurring. It follows that rdt is the differential probability that an event will
take place in the differential time increment dr. For a radiation detector with
unity efficiency counting a single radioisotope

r= §_HZ<

dr

where N is the number of radioactive nuclei and A is their decay constant.

A. Intervals Between Successive Events

In order to derive a distribution function to describe the time intervals between
adjacent random events, first assume that an event has occurred at time r=0.
What is the differential probability that the next event will take place within a
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differential time 47 after a time interval of length #? Two independent processes
must take place: No events may occur within the time interval from 0 to ¢, but
an event must take place in the next differential time increment dr. The overall
probability will then be given by the product of the probabilities characterizing
the two processes, or

Probability of next Probability of Probability
event taking place in = no events during X of an event
dr after delay of ¢ time from O to ¢ ‘during dt
I (Hdr = P(0) X rdt (4-58)

The first factor on the right-hand side follows directly from the earlier discussion
of the Poisson distribution. We seek the probability that no events will be
recorded over an interval of length ¢ for which the average number of recorded
events should be rt. From Eq. 4-24

Svcmé
o
PO)=e" (4-59)

P(0)=

Substituting Eq. 4-59 into Eq. 4-58 leads to

I(Ddt=re "dt (4-60)

Ii(1) is now the distribution function for intervals between adjacent random
events. The plot below shows the simple exponential shape of this distribution.
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Note that the most probable interval is zero. The average interval length is

calculated by
=] o
-
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which is the expected result.
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= w (4-61)
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In some radiation applications, the counting rate is low enough so that each
individual count can be visually observed as the data are being collected.
Experienced observers soon learn what a true exponential interval distribution
“looks like” and occasionally can spot a malfunctioning detector by noting a
deviation from an expected random input signal.

B. Intervals Between Scaled Events

Event rates are often high enough to necessitate the use of a scaler before the
output of the detector can be recorded. The scaler serves to reduce the apparent
rate by producing an output pulse only when N input pulses have been
accumulated.

A general form for the distribution which describes scaled intervals can be
derived using arguments parallel to those given earlier for unscaled intervals.
Again, two independent processes must occur: A time interval of length ¢ must
be observed over which exactly (N — 1) events are presented to the scaler, and an
additional event must occur in the increment dr following this time interval.
Under these conditions, a scaled interval of length within dr about ¢ will take
place. The parallel expression to Eq. 4-58 then becomes

Iy(t)dt= P(N —1)rdt (4-62)

Again using the Poisson form for P(N — ), Eq. 4-62 becomes

(r)V e

Iy(Hd = N=T)

rdt (4-63)

I5(1) is the interval distribution for N-scaled intervals. A plot is given in Fig.
4-14 for various scaling factors and shows the more uniform intervals that
accompany larger values of N. The average interval is

M.n \A.v QzS&u .R ot
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whereas the most probable interval is evaluated by setting

aly (1) _

dt 0

and leads to
g =N (4-65)
most r

probable
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FIGURE 4-14.

Graphical representations of the scaled interval distribution I,(f). Part

(a) shows four distributions for scaling factors of 1, 2, 3, and 4. Part (b) plots interval
distributions for N=1 through N =10 normalized to the same average interval N/r.

PROBLEMS

4-1.

4-2.

4-3.

4-4.

A source i1s counted for 1 minute and gives 561 counts. The source is
removed and a I-minute background count gives 410 counts. What is the
net count due to the source alone and its associated standard deviation?

A 10-minute count of a source + background gives a total of 846 counts.
Background alone counted for 10 minutes gives a total of 73 counts.
What is the net counting rate due to source alone, and what is its
associated standard deviation?

The measurement described in Problem 4-2 is to be repeated, but in this

case the available 20 minutes is to be subdivided optimally between the
two separate counts. Find the optimal allocation of time that minimizes
the expected standard deviation in the net source counting rate. By what
factor has the expected statistical error been reduced from the situation
of Problem 4-2?

A flow counter shows. an average background rate of 2.87 counts per
minute. What is the probability that a given two-minute count will
contain:

(a) exactly five counts
(b) at least one count.

w

4-6.

4-7.
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What length of counting time is required to insure with >99 percent
probability that at least one count is recorded?

The following data are obtained from sources A and B of the same
isotope:

Timing Period
Source A +background 251 counts S minutes
‘Source B+ background 717 counts 2 minutes
Background 51 counts 10 minutes

What is the ratio of the activity of source B to source A, and what is the
percent standard deviation in this ratio?

The background count from a detector was measured to be 845 over a
30-minute period. A source to be measured increases the total counting
rate to about 80 counts per minute. Estimate the time the source should
be counted to determine the counting rate due to the source alone to
within a fractional standard deviation of 3 percent.

Thirty different students have measured the background counting rate
with the same apparatus. Each used the same procedure, consisting of
recording the number of counts in five l-minute intervals, and taking
their average. A set of numbers from a typical student is shown below:

25=count in first minute
35=count in second minute
30=count in third minute
23 =count in fourth minute
_27=count in fifth minute
total = 140

mean = ._.mb =28.0 counts

5 minute

(a) Does this data seem reasonable assuming all the fluctuations are
statistical? Substantiate your conclusion quantitatively.

(b) Based on the above data, what is the expected standard deviation of
the mean?

(c) Estimate the sample variance of the 30 numbers representing a
similar calculation of the mean background rate by each of the 30
students.

(d) Again assuming only statistical variations, estimate the standard
deviation of the final answer for the mean obtained by averaging all
30 independent values.

The following set of 25 counts was recorded under identical detector
conditions and counting times. Apply the Chi-squared test to determine



4-9.

4-10.

4-11.

4-12.

4-13.
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.whether the observed fluctuations are consistent with expectations from
Poisson statistics.

3626 3711 3677 3678 - 3465
3731 3617 3630 3624 3574
3572 3572 3615 3652 3601
3689 3578 3605 3595 © 3540
3625 3569 3591 3636 3629

An average of five sequential 2-minute counts of a constant source by
Lab Group A gave a resulting value of 2162.4 counts per minute. Lab
Group B then used the same source and detector in identical conditions
and arrived at a value of 2081.5 counts per minute based on four
sequential 5-minute counts. Is the difference between these two results
statistically significant?

You are asked to calibrate the activity of a Cs-137 gamma ray source by
comparison with a standard Cs-137 reference source of approximately
the same activity. The standard source has a quoted activity of 3.50+0.05
microcuries (+ one standard deviation) and either source alone gives rise
to a counting rate of about 1000 per second in the available counter.
Background rates are negligible. ,

Assuming that each source is counted separately for equal counting
times, how much tota/ time will be required in order to determine the
unknown activity to within a 2 percent expected standard deviation?

A particular counting system has an inherent average background rate of
50 counts per minute. A decaying radioisotope source was introduced
and a 10-minute count showed a total of 1683 counts. After a delay of 24
hours, the 10-minute count was repeated, this time giving a total of 914
counts.

(a) What is the half-life of the source?

(b) What is the expected standard deviation of the half-life value due to

counting statistics?

An engine wear test is to be carried out in which the weight of radiocac-
tive piston ring particles in an oil sample is to be determined. A sample
of the used oil gives 13,834 counts over a 3-minute period. A standard
has been prepared using exactly 100 pg of the same activity material
which gives 91,396 counts over a 10-minute period. Background for the
detector has been determined to be 281 counts per minute, measured
over a very long counting period (~24 hours). Find the weight of
particles in the sample and its expected fractional standard deviation.

The decay constant A of radioisotope sample is to be determined by
counting in a detector system with negligible background. An approxi-
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4-14.

mate value A’ is already known. The procedure will be to count for a
short time 7 at ¢=0, wait a time At, and then count again for the same
time 7. >mm:55m that 7« 1/XN’, what value of the waiting time Az will
minimize the expected statistical error in the value of A derived from
these measurements?

The thickness of nominal 1 cm sheet aluminum is to be monitored by
noting the attenuation of a gamma ray parallel beam passing perpendicu-
larly through the sheet. The source and detector are well shielded, so
background and scattering into the detector are negligible. Any m?.os
sample will spend 1 second in the beam. The detector counting rate with
no sheet in place has a mean value (measured over a long time) of 10,000
per second.

(a) Find the optimum value of the linear attenuation coefficient u which
will minimize the uncertainty in the derived sheet thickness value duéd
to statistical fluctuations. (What is the corresponding gamma ray
energy?)

(b) What is the lowest attainable fractional standard deviation under
these conditions?
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