No. 9, October 1974

Visual-aural properties of some optical glasses

Ultrasonic waves generate in gases, liquids and solid-state bodies periodic density fluctuations. The refractive index differences resulting therefrom act on light beams like a diffraction grating.

The diffraction of laser beams by ultra-sound is applied in many areas of visual communication (beam deflection, beam scanning, Q-switching, holographic storage with x-y deflection systems, visual computers, visual correlators).

In addition to some crystals, optical glasses of high refraction are suitable materials for sound-light modulation. The deflection efficiency (1) is a measuring size for their qualification as acoustic light deflectors $\begin{bmatrix} 1 \end{bmatrix}$:

$$\eta = \frac{\pi^2}{2} \cdot \frac{n^6 p^2}{q^2 v^3} \cdot \frac{W}{H \lambda^2} \cdot p_{ak}$$
 (1)

p photo-elastic tensor component
v sound velocity within medium
n refractive index
ρ density
H length of sound fields
p_{ak}
acoustical power

The figure of merit

$$M_2 = \frac{n^6 p^2}{\rho v^3}$$
 (2)

is a function only of the material properties of the visual-aural deflector used.

The photo-elastic tensor components p_{11} and p_{12} , required for determining the figure of merit, are yielded by the measurement of the refractive index variations resulting from the mechanical stresses for light oscillating in parallel (Δn_{1}) with and perpendicular (Δn_{2}) to the direction of stress [2].

$$p_{11} = \frac{2E}{n_0^3 \sigma (2\mu^2 + \mu - 1)} \cdot \left[2\mu \Delta n_1 + \Delta n_{11} (1 - \mu) \right]$$
 (3)

$$p_{12} = \frac{2E}{n_0^3 \sigma (2\mu^2 + \mu - 1)} \cdot (\Delta n_1 + \mu \Delta n_4)$$
 (4)

E modulus of elasticity

μ Poisson's ratio

n_o refractive index of strain-free glass σ mechanical stress

The dependence of the refractive index variations Δn_{ij} and Δn_{ij} on the mechanical stress σ has been determined interferometrically in a bending tensile test $\begin{bmatrix} 3 \end{bmatrix}$.

The sound velocity in longitudinal direction results from the relation

$$v_{long} = \sqrt{\frac{E}{\rho}} \cdot \frac{1-\mu}{(1+\mu)(1-2\mu)}$$
 (5)

The photo-elastic tensor components and the visual-aural figure of merit of some optical glasses are given in the following table for wave length 0.6328 μm . Further literature $\left[4,5,6\right]$.

In addition to a high visual-aural figure of merit, little ultra-sound attenuation and low absorption in the visible region of the spectrum are desired. Are given the sound attenuation for various acoustic frequencies and the internal transmittance for λ = 0.6328 μm with a specimen thickness of 1 cm.

Tests performed on new glasses showed that the visual-aural properties can be further improved. A figure of merit of $M_2 > 20 \cdot 10^{-18}~\text{sec}^3/\text{g}$ has already been attained. However, the attenuation losses of approx. 4 db/cm at 50 mHz and of approx. 8 db/cm at 100 mHz are still relatively high. We will be pleased to receive inquiries on the subject.

References:

- [1] H. Eschler. "Gegenüberstellung elektro-optischer und akusto-optischer Lichtablenkungssysteme".
- N.F. Borrelli ans R.A. Miller."Determination of the Individual Strain-Optic Coefficients of Glass by an Ultrasonic Technique".

 Applied Optics, Vol.7, No.5, May 1968, P.745-750
- E. Schuster und F. Reitmayer. "Die Änderung der Lichtbrechung von Gläsern bei eindimensionaler Druck-bzw. Zugbeanspruchung".
 Glastechnische Berichte 34, 1961 H.3, S.130-133
- Douglas A. Pinnow."Elastooptical Materials".

 CRC Handbook of Lasers, R.J. Pressley, Cleverand, Ohio 1971
 P. 478-488
- R.W. Dixon."Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners".

 Journal of Applied Physics, Vol.38, Number 13, December 1967.
- V.V. Kludzin, S.V. Kulakov, B.P. Razzhivin and G.K. Ul'janov.
 "Theory and Experiment, Ultrasonic Light Modulation in
 Dense Flints".
 Optical Technology, Vol. 39, Number 1, January 1972.

						
Glass type	F2	SF2	SF6	SF14	SF57	SF59
						. Same
Refractive index	1.617	1.644	1.799	1.756	1.840	1.943
Modulus of elasticity (kp/mm ²)	5910	5650	5660	6640	5560	5250
Sound velocity v _{long} (m/sec)	4300	4080	3580	4090	3460	3200
7	3.61	3.86	5.18	4.54	5.51	6.26
Poisson's ratio	0,225	0.231	0.248	0.235	0.253	0.269
Photo-elastic tensor components	0.18	0.10	0.21			
- 1 1		0.19	0.21	0.18	0.22	0.27
- 14	0.25	0.24	0.22	0.21	0.22	0.24
Visual-aural figure of merit						
· · · · · · · · · · · · · · · · · · ·	2 4	3 4 •	6 7	3 4	8 8	19 15
Sound attenuation 50 mHz 100 mHz (db/cm)	~1 · /	~ 1 ~ 2	2.3	1.222.5	1.4	5.3 12.0
Internal transmittance for $\lambda = 0.6328 \mu m$ with $d = 1 cm$	0.997	0.998	0.998	0.995	0.997	0.998