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Can light propagating through a medium be in
uenced by the application of an external

magnetic �eld? You may have observed optical activity in chiral molecules in the PHY 200

lab. The present experiment extends these concepts to magnetically induced birefringence

through the historically important Faraday E�ect, which reveals the rich interplay between

optics and magnetism.
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1 Objectives

In this experiment, we will,

1. shed some light on the underlying mechanism of magnetically induced birefringence,

2. demonstrate the advantages of phase sensitive detection (PSD),

3. understand the mathematical formalism for polarized light and its manipulation,

4. build or use a source of magnetic �eld and measure the �eld strength using a commercial

magnetometer, and,
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5. calculate the Verdet constant of terbium gallium garnet (TGG) and of a diamagnetic

liquid.
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2 Introduction

Q 1. What is polarization of light? Write down the electric �eld for linear and circular

polarization. Also, show that linearly polarized light can be written as a sum of left and right

circular light [1]?

2.1 Birefringence

Michael Faraday observed the relationship between electromagnetism and light in 1845. Fara-

day's observation gave birth to the �eld of magneto optics: the interaction of optical radiation

with magnetic media or the interaction of light with an optically inactive medium placed inside

a magnetic �eld. The atom can be viewed as a positive charge surrounded by an electron

shell. The electrons are bound to the nucleus. These binding forces can be modeled through

springs as shown in Figure (1).

For an anisotropic substance, the binding forces on the electron are anisotropic implying that

the spring constant will be di�erent in di�erent directions: an electron displaced from its

equilibrium position along one direction will oscillate with a di�erent frequency than another
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Figure 1: Negatively charged shell bound to positive nucleus by spring having di�erent sti�ness

along di�erent directions. This is also called the Lorentz model.

direction. Since the electric �eld associated with light drives the electrons of medium at its

frequency, these electrons reradiate. The resulting secondary wavelets recombine and light

propagates through a medium. The speed of the wave through the medium, is therefore,

determined by the di�erence in natural resonating frequency of electrons and the frequency

of the applied electric �eld. With anisotropy, the whole process becomes direction-dependent.

Since the refractive index, (n = c=v) is a function of speed, the anisotropy results in di�erent

refractive indices along di�erent directions. This so-called birefringence manifests itself the in

rotation of the plane of polarization [1].

2.2 Faraday rotation

Chiral compounds exhibit rotation of linearly polarized light due to natural birefringence, but

this birefringence can also be induced in otherwise optically inactive materials either by applying

stress, magnetic or electric �eld. Magnetically induced birefringence is called the Faraday

e�ect.

Linearly polarized monochromatic light while transmitting through an optically inactive mate-

rial, under the in
uence of an axial magnetic �eld, is rotated by an angle � as shown in Figure

2. The angle of rotation � is given by,

� = V Bd; (1)

provided the magnetic �eld remains uniform throughout the length d of sample. For non

uniform magnetic �eld, � is given by,

� = V

∫ d

0

B(z)dz: (2)

The proportionality constant V is a characteristic of the material, called the Verdet constant

and is a function of the wavelength of light, temperature and refractive index of the material.

It is the rotation per unit path length per unit applied magnetic �eld. In other words, it quan-

ti�es the induced birefringence. In this experiment you will measure this induced birefringence.
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Figure 2: Faraday rotation, The plane of polarization of light is rotated under the action of

an axial magnetic �eld.

2.3 Theoretical description

In the next few subsections, we will describe the origin of Faraday rotation for the avid reader.

2.3.1 Larmor precession of the electron cloud in an applied magnetic �eld

We now try to posit some foundational arguments describing the underlying mechanism of

Faraday rotation. Consider an electron, moving in a circle of radius r in a plane whose normal

makes an angle � with an applied magnetic �eld B. Since an electron is negatively charged

its angular momentum L and magnetic moment �e are opposite to each other. The magnetic

�eld exerts a torque � on the magnetic dipole �e ,

� = �e � B = �eB sin�:

Q 2. Referring to Figure 3 what is the direction of the torque on the magnetic dipole?

According to Newton's second law, an angular impulse � produces a change in angular mo-

mentum,

�dt = dL:

Thus, the attached vector L rotates in anticlockwise direction. The resulting precession traced

out by tip of the vector L is shown in Figure 3. The angle of rotation through which angular

momentum's projection along the applied �eld, L
0

, moves in time dt is,

d� = dL=L
0

= �dt=L sin�

and the precessional or the Larmor angular velocity becomes,

!L =
d�

dt
=

�

L sin�
=

�eB sin�

L sin�
=

�eB

L
: (3)
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L

plane of electron rotation

Figure 3: Precession of angular momentum vector about the direction of the applied magnetic

�eld.

The magnetic moment of circular current is given by

�e = iA = i(�r 2); (4)

where,

i =
e!

2�
; (5)

whereas the angular momentum of electron is given by,

L = r � p

L = mvr = mr 2!: (6)

Substituting Eqs (4), (5), (6) into (3), we obtain,

!L =

(
e!

2�

)(
�r 2

mr 2!

)
B (7)

=
eB

2m
; (8)

showing that the Larmor frequency !L is independent of the orientation of the current loop

and the overall e�ect is the Larmor precession of electronic structure about the direction of

applied magnetic �eld [2].

2.3.2 Semi-Classical description of induced birefringence

You must have realized from Q 1 that plane polarized light is a combination of left and right

circular (l and r) polarized light. Now, if light of vacuum frequency f is traveling through a
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medium whose electrons are rotating at the Larmor frequency then the l and r components

will rotate the electron clouds with frequencies f + fL and f � fL. Therefore in the dispersive

medium, (refractive index is frequency dependent), the functional dependence of the respective

refractive indices can be written as,

nl = n(f � fl)

and

nr = n(f + fl);

If plane polarized light traverses a distance d then the optical path lengths for l and r light

are nld and nrd respectively, so the optical path di�erence is (nr � nl)d . The di�erence

of two refractive indices, the induced birefringence is,

nr � nl = n(f + fL)� n(f � fL)

From a Taylor series expansion,

nr � nl �
(
n(f ) +

dn

df
fL

)
�

(
n(f )� dn

df
fL

)
(9)

= 2fL
dn

df
: (10)

From Eq 8,

fL =
!L

2�
=

eB

4�m
;

and Eq (10) becomes,

nr � nl = 2

(
eB

4�m

)(
dn

df

)
:

Since, phase change of a wave is k (= 2�=�) times the physical path traversed by the wave,

the phase change for the two components is,

�l =

(
nld

�

)
(2�) (11)

�r =

(
nrd

�

)
(2�): (12)

When l and r waves enter the sample, the phase di�erence is zero, but the phase di�erence

accumulates as light passes through the sample. The vector sum of the two electric �elds on

emerging from the sample is shown as E with a net rotation � from its initial value. Since, E

is an equal superposition of l and r components, we see from Figure (4) that,

�l � � = �r + �

) � =
�l � �r

2
:
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Figure 4: Linearly polarized light E can be decomposed into left and right linearly polarized

components. Superposition of left and right circularly polarized light into linearly polarized

light. (a) Before entering the sample, both the l and r components are moving with same

speed albeit in opposite directions and (b) after emerging from the sample, these components

have travelled with di�erent velocities and acquired di�erent phases.

Thus, the Faraday rotation angle is,

� =
1

2

(
2�d

�

)(
nl � nr

)
=

(
�d

�

eB

2�m

)(
dn

df

)
=

e

2m�

(
dn

df

)
Bd: (13)

Comparing Eq (1) and (13), the Verdet constant is,

V =
e

2m�

(
dn

df

)
(14)

which is a function of wavelength and the dispersion [2]. The Faraday rotation is a direct

result of nl 6= nr arising because of the frequency dependent refractive index, dn=df .

2.3.3 Phenomenological description of Faraday e�ect based on Jones calculus

Jones calculus, invented by the American physicist R. Clark Jones, in 1941 [1], is a useful

formalism to understand the state of polarization of perfectly polarized light as well as its

transformation by various optical devices. For example, polarized light given by,

E(z; t) = îEox cos(kz � !t + �x) + ĵEoy cos(kz � !t + �y) (15)

is represented in the Jones formalism as,

~E(z; t) =

(
~Ex(z; t)
~Ey(z; t)

)
=

(
Eoxe

i�x

Eoye
i�y

)
e i(kz�!t): (16)
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The two component column vector completely speci�es the amplitude and phase of electric

�eld and hence its state of polarization. This is called the Jones vector. Most of the times, it

is not necessary to know the exact phase but the phase di�erence " = �x � �x between the

x and y components. Moreover, e i(kz�!t) is always understood to be present. Accordingly,

Jones vector can also be written as,

~E(z; t) =

(
Eox

Eoye
i"

)
e i�x : (17)

We choose not to write the term e i�x , since it does not have any physical consequences,

remitting in the Jones vector,

~E(z; t) =

(
Eox

Eoye
i"

)
: (18)

For linearly polarized light " = 0 or 180o , therefore the general form of Jones vector for linearly

polarized light is,

~E(z; t) =

(
Eox

Eoy

)
: (19)

Jones vectors can be normalized such that the sum of the squares of their components is 1,

i.e,

E�oxEox + E�oyEoy = 1:

Where the � represents the complex conjugation. This normalized form discards the amplitude

information needed for absorption calculations, but simpli�es analysis in many other cases. The

normalized form of (19) at an angle � w.r.t an arbitrary reference axis is,

~E(z; t) =

(
cos�

sin�

)
;

where, the angle � is de�ned such that,

cos� =
Eox√

E2
ox + E2

oy

;

= Eox ;

and; sin� =
Eoy√

E2
ox + E2

oy

;

= Eoy :

Q 3. Write down the normalized Jones column vector for horizontally, vertically, left and

right circularly polarized light?

Suppose that the Jones vector for polarized incident beam ~Ei is represented by ~Et after

transmission through an optical element then, the optical element can be represented as a

2�2 transformation matrix J, called the Jones matrix. The transformation is captured through
the relation,

~Et = J~Ei (20)
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where

J =

(
J11 J12
J21 J22

)
: (21)

If the beam passes through a series of optical elements represented by the matrices J1; J2; J3; :::; Jn,

then

~Et = Jn; :::; J3 ; J2 ; J1 ~Ei : (22)

The matrices do not commute, so they must be applied in the proper order.

Q 4. Show that the transformation matrix Jh for a horizontal linear polarizer is

Jh =

(
1 0

0 0

)
: (23)

Q 5. What is Malus's law? How does a polarizer work?

3 Experimental Technique

3.1 Why phase sensitive detection for measuring Faraday rotation?

We now turn to a description of how we will set out to measure Faraday rotation. You

have already performed an introductory experiment of using the lock-in ampli�er, so without

discussing the details of the technique and the instrumentation any further, we will only focus

on why are we using phase sensitive detection (PSD) in this experiment. Consider a simple

optical system used to measure the transmission of light through a medium. Let us suppose

 Light

source Sample

Display

Detector

Figure 5: A simple optical system.

a small response obscured by overwhelming noise is to be measured. The output signal in this

case will be,

Vo = Vsig + Vnoise : (24)
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Figure 6: (a) Noise Vn and signal amplitude Vs as a function of frequency. (b) Modulating the

signal to a region of low noise. The spikes in Vs represent 50Hz and its harmonics.

The noise and signal amplitudes for such a system as a function of frequency are shown in

Figure (6). The large peaks at 50 Hz and its multiples are due to electrical interference from

the mains power lines. The noise power increases at lower frequencies (remember this is due

to 1=f noise). Faraday rotation is extremely small in magnitude. If such a small signal that is

overwhelmed by noise is to be measured, amplifying the signal will not improve the signal-to-

noise ratio, since the noise is ampli�ed with the signal. A clever approach is to move the signal

to a region of low noise i.e., to a higher frequency. For example, in the present experiment,

we use an ac magnetic �eld for inducing a time varying Faraday rotation. This means that

our signal (the Faraday rotation) is shifted to a higher frequency part of the spectrum. This

process is called modulation and is achieved by mixing the signal with a reference. (We hope

you are already familiar with how a lock-in ampli�er works). This technique gives two real

advantages.

� The weak signal of interest buried in noise can be extracted successfully through PSD.

� Faraday rotation can be observed at smaller values of magnetic �eld (e.g., 80 G rms).

This circumvents the need for large, expensive, bulky, water-cooled electromagnets for

producing large DC magnetic �elds.

3.2 The experiment

3.2.1 Malus's law

The plane of polarization of linearly polarized monochromatic light traversing through the

sample S of length d placed under the in
uence of an ac magnetic �eld is rotated. Since

the �eld is oscillatory, the rotation angle is also oscillatory. Another polarizer set at an

arbitrary angle relative to input polarizer subsequent to the sample is required to analyze the

rotation. The analyzer converts the polarization modulation to an amplitude modulation by

the way of Malus's Law. The emerging light beam carrying the information in the form of

amplitude variations is incident upon a photodiode whose output appears in the form of current
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proportional to the light intensity. In the �rst part of the experiment, we will seek to verify

Malus's law. First, we present a treatment in the light of Jones calculus.

Let us suppose that the incident light polarized along the x-axis and is propagating in the z

direction. The Jones vector for the electric �eld is,

~Eo =

(
1

0

)
Ao exp i(kz � wt) (25)

where Ao corresponds to the amplitude of the electric �eld. Suppose, the analyzer is set at

an angle � w.r.t the polarizer. The Jones transformation matrix for the analyzer is,

φ

Polarizer

An
aly
ze
r

φ

Polarizer

An
al
yz
er

θ

(a) (b)

Sam
ple

Figure 7: (a) The relative angle between the polarizer and the analyzer is �. (b) Rotation �

by passing through the sample and detection after an analyzer placed at an angle �.

Jrot(�) =

(
cos2 � sin� cos�

sin� cos� sin2 �

)
: (26)

Q 6. Show that Jrot(�) in Eq (26) indeed represents the Jones matrix for an analyzer

oriented at � w.r.t the x�asis.
Q 7. Find the output intensity after an analyzer oriented at an angle �.

3.2.2 Output intensity after a sample and analyzer arrangement

After passing through the sample S of length d placed in magnetic �eld, the plane of polar-

ization of light is rotated by an angle �, so the Jones vector after emerging from the sample is,

(
cos �

sin �

)
(27)

and the corresponding electric �eld is,

~E =

(
cos �

sin �

)
Ao exp i(kz � !t): (28)

Q 8. Since, the analyzer is set at an angle � w.r.t the polarizer, show that electric �eld of

the light beam after emerging from the sample followed by the analyzer is,

~E =

(
cos(�� �) cos�

cos(�� �) sin�

)
Ao exp i(kz � wt): (29)
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The intensity of light measured by the photodetector is,

I = MA2
0[cos

2(�� �)]; (30)

where M represents the relationship between the intensity and the sensitivity of the detection

process. For all practical purposes, M can be considered to a scaling factor that is consistent

over various experiments.

Q 9. Derive the expression (30).

Q 10. Write the Jones transformation matrix for the combination of the polarizer, sample

and analyzer, placed in the same order.

3.2.3 Optimization of the analyzer angle

According to Eq. (30), the rotation of the plane of polarization manifests as a change in

intensity at the photodiode. To get maximum change in intensity, the analyzer angle needs

to be optimized. This means that we need to maximize dI=d�. Di�erentiating the intensity

w.r.t �, for a �xed Faraday rotation � we obtain,

dI

d�
= 2MA2

0 cos(�� �) sin(�� �) (31)

= MA2
0 sin(2(�� �)): (32)

Di�erentiating again,

d2I

d2�
= 2MA2

0 cos
(
2(�� �)

)
: (33)

Maximum change in intensity is obtained by maximizing dI=d� which is achieved by setting

d2I=d�2 = 0, which implies that,

�� � = 45o :

Since, the Faraday rotation � is much smaller than �, the maximum �I for any � is obtained

when the analyzer is set at 45o relative to polarizer. The measured intensity, therefore, is,

I =
MA2

0

2
[1 + cos2(�� �)]

=
MA2

0

2
[1 + cos(2�) cos(2�) + sin(2�) sin(2�)]:

For � = 45o and a small angle �, sin(2�) �= (2�), leading to the observed intensity,

I �= MA2
0

2
(1 + 2�): (34)

3.2.4 Faraday rotation angle for oscillatory �elds

The �eld is made oscillatory, with an oscillating frequency 
,

B = B0 sin(
t);
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then the angle �(t) also becomes oscillatory. Since the angle of rotation is directly dependent

on the magnetic �eld, i.e.,

� = �0 sin(
t): (35)

Therefore, for oscillatory �elds Eq. (34) can be written as,

I �= MA2
0

(
1 + 2�0 sin(
t)

)
2

: (36)

We will use this modulating intensity for our phase sensitive detection scheme.

3.2.5 Converting light intensities into photocurrents

The photodiode converts the light intensities into current. We denoted intensities by I, so

let's denote currents by i . In Eq. (36), the intensity has a DC component and a component

that alternates at a frequency 
, leading to,

i = idc + iac

where idc = MA2
0=2 and iac = M�0A

2
0 sin(
t). Modulated photocurrent due to Faraday

rotation iac is measured through lock-in ampli�er which displays the rms values. Therefore

the output displayed on the front panel of the lock-in ampli�er is,

iac =
iacp
2
=

M�0A
2
0p

2
:

Taking the ratio of the modulated current (shown by the lock-in ampli�er) to the steady dc

current, we obtain,

iac
idc

=
�0A

2
0p
2

2

A2
0

; (37)

and the Faraday rotation angle is determined by,

�0 =
iacp
2 idc

(38)

The angle �0 corresponds to the peak �eld B0 and �rms = �0=
p
2.

The dc component is measured by a voltmeter in the absence of magnetic �eld while the ac

component is measured by the lock-in ampli�er in the presence of the magnetic �eld. Finally

assuming a uniform magnetic �eld, the Verdet constant is determined from the experimental

values of �, B and d ,

� = V Bd: (39)

This equation could mean �0 = V B0d or �rms = V Brmsd .

Q 11. What is the working principle of a photodetector? What does the photodetector

measure, the electric �eld or the intensity?

At this stage, you must draw a conceptual sketch of how you will measure the Verdet constant.

Your sketch should mention relative angles between the polarizer and the analyzer.

14



Table 1: List of major equipment used in the experiment.

Component Speci�cations

Light source laser 405 nm, 40 mW (B&W TEK (405-40E))

Magnetic �eld production

Signal generator, 10Vpp (BK Precision 4040DDS)

Audio ampli�er, 150 W

Power supply, 10 A, 12 V

Helmholtz coil, 120G rms (homemade)

Detection element Photodiode (New-port SLS-818)

Measuring instruments

Lock-in ampli�er (Stanford Research System SR-830)

Gaussmeter with axial and transverse probes (LakeShore

410)

Clamp meter to measure AC current Kyoritsu

Digital Multimeter

Others

Optical breadboard 90� 60� 6 cm (homemade)

Optical rail, 60 cm long (homemade)

Rail carrier 2:5 cm (homemade)

SS Post, 5 cm long (homemade)

Post holder, 7:6 cm long (homemade)

Rotation mount, 2 degree resolution (Thorlabs RSPO5/M)

Laser post, 20 cm long

Linear Polarizer extinction ratio=1000:1 (Thorlabs

LPVIS050)

V shaped laser housing (homemade)

Crescent shaped cell holder (homemade)

Te
on crystal holder (homemade)

Laser safety glasses OD=4, OD=7 (Thorlabs LG4, LG10 )

M6 and M4 screws

TGG crystal d=1 cm (Castech Inc.)
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3.2.6 Overview of the experiment

Figure 8 shows the schematic diagram of the experimental setup for the observation of Faraday

rotation.

Polarizer

Lock-in Amplifier

z

Laser

Function

C

generator

Analyzer

Photodetector

Amplifier

Helmholtz coil

Crystal

at 0o at 45
o

Figure 8: Schematic illustration of experimental setup for Faraday rotation. The dashed lines

show the optical axes of the polarizer and the analyzer.

The setup comprises these modules:

(a) Light source: We use a diode-pumped solid laser of wavelength 405 nm,

(b) a mechanism for producing and measuring an oscillating magnetic �eld, and,

(c) detection and measurement equipment

Also see Table (1) which lists the most important components of this experiments.

3.2.7 Light source

The laser is of high power (� 40mW) and safety precautions must be taken. Safety goggles

must be worn at all times, and there should be no exposure to stray light from the laser. The

laser warms up in 15 minutes and should not be over run.

3.2.8 Mechanism for producing and detecting the magnetic �eld

In principle, both AC and DC magnetic �eld can be used in this experiment. DC sources

include permanent magnets or solenoids possessing steady current in their windings. Since,

Faraday rotation is extremely small in absolute magnitude, of the order of microradians, so a
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large DC magnetic �eld, of several kilo gauss will be required to achieve a sizeable rotation,

which in turn requires large and bulky DC magnets or a large DC power supply to produce

required �eld [5]. However, using an ac magnetic �eld, the rotation becomes oscillatory and

can be tracked by PSD. For example, in this experiment, you will be provided with a Helmholtz

coil capable of generating a �eld of � 120 G rms at the centre.

In our experiment, the Helmholtz coil is constructed from 18 gauge copper wire (diameter

1:2 mm). Each multilayer coil consists of 18 turns in 18 layers, the coil's outer and inner

diameters are 10:2 cm and 6:5 cm respectively. The length of each coil is 2:7 cm and radius

is 4:5 cm. Inductance of the coils, determined using an LCR meter, is found to be 7 mH with

a resistance of 1.5 
 for each coil, so the total inductance of the Helmholtz pair is 15 mH

and the total resistance is 3 
 . The Helmholtz coil pair constitutes a series RLC circuit. At

resonating frequency !r , the inductive reactance XL is equal to the capacitive reactance XL

and total impedance is purely resistive. The resonance frequency is,

!r =

√
1

LC

or

fr =
1

2�

√
1

LC
:

In our experiment, we will determine the resonant frequency, instead of relying on its predicted

value.

Q 12. Calculate the resonating frequency when a capacitor of 1:2 �F is connected in series

with the coil? Why is the Helmholtz coil made resonating?

3.2.9 Measurement of optical intensities

In section 3:2:4 the conversion of light intensities to photocurrents has already been discussed.

This section will focus on the detector and the use of the lock-in ampli�er in the measurement

of these photocurrents. We have used the Newport (SLS-818) photodetector which will

provide input to the lock-in. It is advisable to shield the detector from any stray magnetic

�elds in order to increase accuracy in our work and it is best to collimate the beam so that

stray light does not a�ect our readings. The lock-in is the model SR-830 from Stanford

Research systems. In order to ensure accuracy in work, care must be taken with the lock-in.

The SR-830 adjusts itself automatically, however it is necessary to ensure that the correct

parameters are already set. Sensitivity should be carefully selected, the shape of the reference

wave must be set to the shape being provided by the function generator and the time constants

should also be carefully set. The lock-in is the main tool which will measure the output iac .

3.2.10 Finding the resonant frequency of the Helmholtz coil

Assemble the setup according to Figure (8). Turn on the audio ampli�er and the function

generator. Amplify an approximately 1 V, 100 Hz sinusoidal signal through audio ampli�er.

Apply this ampli�ed output to the Helmholtz coil. It is not necessary to turn on the laser for

this step.
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Increase the frequency of the ac signal applied to the coil. You may choose your step size (10-

20Hz). Tabulate the frequency against current passing through the Helmholtz coil and plot

the frequency response. The current is measured with the help of a clamp meter. Determine

the resonance frequency fr.

3.2.11 Measuring the magnetic �eld produced by the Helmholtz coil

Set the function generator at the resonating frequency. Increase the current by increasing

the amplitude of the signal from the function generator. Measure the magnetic �eld using

the gaussmeter in ac mode (LakeShore, Model 410) equipped with transverse probe at the

midpoint between the two coil. Plot a graph between current and magnetic �eld. Do you ob-

serve a linear relationship? Note that the gaussmeter measures the rms value of the magnetic

�eld. At the end of this part, you must convince yourself that the current through the coil is

a measure of the magnetic �eld. Now turn o� the magnetic �eld.

3.2.12 Verifying Malus's Law

Next, you will verify the Malus's law. Turn on the laser and align the optics so that the laser

spot falls right in the middle of the detector. Connect the I/V converter to the output of the

photodetector. The photodetector produces a photocurrent proportional to the input light

intensity. The I/V converter takes the photocurrent i and produces a voltage jV j = iRf where

Rf = 5:6M
. Hence a measure of V , detected on a voltmeter, is re
ection of the optical

intensity.

Place a polarizer near the output of the laser and rotate its optical axis. Note down the

intensity values. Now place a second polarizer infront of the photodetector. Vary the angle

of the analyzer in steps of 20 and note down your results.

Plot a graph between the intensity and the analyzer angle. Fit the function using a suitable

function. What are the outcomes of the �tting function?

3.2.13 Determining the Verdet constant of Terbium Gallium Garnet (TGG) crystal

You will now measure idc , the dc component of the detected signal, in the absence of magnetic

�eld, but with the sample in place. Perform optical alignment again if required.

Fix the axial probe on the leftone holder on a side of the Helmholtz coil and turn on the

Gauss meter. Select the 200 G range and ac mode. Switch on the audio ampli�er and tune

the function generator latter to the resonating frequency. Current is now passing through the

Helmholtz coil. Select some value of current and measure the corresponding magnetic �eld

at the midpoint between the Helmholtz coils (A �eld of 90 G rms is a reasonably good value).

Now move the probe away from the center of coils on both sides. Check that magnetic �eld

is not reaching the polarizers and photodiode. Switch o� the magnetic �eld.

Now place the terbium gallium garnet (TGG) crystal on the crystal holder. The TGG crystal

is 1 cm long. (Note: Never touch the lateral surfaces of the TGG crystal.)
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Minimize the background reading from ambient light either by placing a black box around the

detector to block ambient light. Open the laserhead shutter.

Rotate the analyzer angle � and �nd out the maximum and minimum intensity. Set the

analyzer at an angle of 45o w.r.t the polarizer. Note down the value of voltage at the

multimeter and divide it by Rf , the feedback resistance of the I/V converter, to obtain idc .

Next, you will determine iac , the (rms value of the) ac component of the photocurrent using

the lock-in ampli�er.

Activate the magnetic �eld. Turn on the function generator and select the resonant frequency.

Connect the output of the function generator to the reference input of the lock-in. Select

the current input mode I, from the input section. Connect the photodiode output directly

(without the I/V converter) to the input BNC connector. Make sure that no error indication

(unlock or overload) occurs. Suitable values for the lock-in are the sensitivity in the range of

nA and a pre-time constant of 3 second.

Rotate the analyzer angle � in steps of 10o and tabulate iac , for any �xed value of the

magnetic �eld. You will observe that the maximum rotation occurs when analyzer is at an

angle of approximately 45o relative to polarizer.

Q 13. What does the reading on the lock-in ampli�er physically represent?

Now �x the analyzer at 45o relative to the polarizer. Increase the magnetic �eld, from an

initial value of 10 Gauss, in steps of 5 or 10 Gauss by increasing the current. For best results

the �eld should not exceed 120 Gauss. The transverse probe of Gaussmeter can be �xed to

observe the magnetic �eld near the center of Helmholtz coil. However, it will not give us the

�eld at the position of the crystal. The �eld can be measured from the current through the

Helmholtz coil.

Tabulate the values for iac for each value of magnetic �eld. Plot iac versus magnetic �eld.

Q 14. Plot the Faraday rotation and use the results to calculate the Verdet constant of

your sample.

Q 15. Clearly quantify your uncertainties.

Q 16. Can you measure idc with the help of the lock-in ampli�er?

4 Measurement of the the Verdet constant using higher

harmonic components (OPTIONAL)

The light rotated by the Faraday medium incident on the photodetector after coming through

the analyzer, contains fundamental as well as components at higher frequencies. The rms

values u1 and u2 of the signal at frequencies f and 2f , can be measured, where f is the

frequency of ac signal passing through Helmholtz coil. The ratios u1=Uo and u2=Uo can also

be used to determine the Verdet constant, where, Uo is the steady output from the photodiode

under zero magnetic �eld and analyzer set for maximum transmittance i.e., analyzer is at 0�
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[6]. The power transmitted through a Faraday rotator is,

I =
MA2

o

2
[1 + cos 2(�� �)] (40)

=
MA2

o

2
[1 + cos 2(�� �o cos(
t))]

=
MA2

o

2
[1 + cos 2� cos(2�o cos
t) + sin 2� sin(2�o cos
t)]:

Using the Jacobi-Anger expansion, we obtain[7],

cos(2�o cos
t) = Jo(2�o) + 2

1∑
m=1

(�1)mJ2m(2�o) cos(2m
t)

sin(2�o cos
t) = 2

1∑
m=1

(�1)mJ2m+1(2�o) cos((2m + 1)
t)

where the Bessel function is,

J�(x) =

1∑
q=0

(�1)q
q!
(q + �+ 1)

(
x

2
)2q+�

and 
 is the factorial function, given by,1


(n) = (n � 1)!

Therefore, Eq (41) becomes,

I =
MA2

o

2

[
1 + cos(2�)

(
Jo(2�o) + 2

1∑
m=1

(�1)mJ2m(2�o) cos(2m
t)

)
+sin(2�)

(
2

1∑
m=0

(�1)mJ2m+1(2�o) cos(2m + 1)
t

)]
: (41)

Let the amplitude of coe�cient of the terms containing 
t and 2
t be represented by s1 and

s2 respectively. Then,

s1 =
MA2

o

2
2(�1)0J1(2�o)j sin(2�)j

= MA2
o

1∑
q=0

(�1)q
q!
(q + 1 + 1)

[
2�o
2

]2q+1
j sin(2�)j

= MAo
2

[
(�1)0
0!
(2)

�o +
�1

1!
(3)
�3o +

(�1)2
2!
(4)

�5o + :::

]
j sin(2�)j (42)

= MAo
2

[
1

1!
�o +

�1
1!2!

�3o +
1

2!3!
�5o :::

]
j sin(2�)j

= MAo
2�o

[
1 +

�1
2
�2o +

1

12
�4o :::

]
j sin(2�)j (43)

1� is the conventional symbol to generalize the factorial function. Since, we are using � for numerically

integrated magnetic �eld, therefore, we have used 
 to denote the general form of factorial function.
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s2 =
MA2

o

2
2J2(2�o)j cos(2�)j

= MA2
o

1∑
q=0

(�1)q
q!
(q + 2 + 1)

[
2�o
2

]2q+2
j cos(2�)j

= MA2
o

[
1


(3)
�2o +

�1

(4)

�4o +
(�1)2
2!
(5)

�6o + :::

]
j cos(2�)j

= A2
o

[
1

2!
�2o �

1

3!
�4o +

1

2!4!
�6o :::

]
j cos(2�)j

=
MA2

o

2
�2o

[
1� 1

3
�2o +

1

24
�4o :::

]
j cos(2�)j (44)

Since,

�o = V Bod (45)

Substituting equation (45) in (43)

s1 = MAo
2V Bod

[
1 +

�1
2
(V Bod)

2 +
1

12
(V Bod)

4:::

]
j sin(2�)j

= UoV Bod

[
1 +

�1
2
(V Bod)

2 +
1

12
(V Bod)

4:::

]
j sin(2�)j: (46)

where, Uo is the steady power on photodetector when polarizers are set for maximum

transmittance (in the absence of applied magnetic �eld).

Substituting equation (45) into (44), we obtain,

s2 =
MA2

o

2
(V Bod)

2

[
1� 1

3
(V Bod)

2 +
1

24
(V Bod)

4 + :::

]
j cos(2�)j

=
Uo

2
(V Bod)

2

[
1� 1

3
(V Bod)

2 +
1

24
(V Bod)

4 + :::

]
j cos(2�)j: (47)

The f and 2f components are determined through lock-in ampli�er which displays rms values,

so from equation (46), the rms value of the �rst harmonic component of output current

(ignoring higher order terms) is,

u1 � UoV Bodp
2

j sin(2�)j
= UoV Bd j sin(2�)j (48)

where B = Bo=
p
2, B represents the rms value of the �eld measured by the Gaussmeter.

Similarly, from (47) the rms value of the second harmonic component of output current is,

u2 � Uo

2
p
2
(V Bod)

2j cos(2�)j (49)

=
Uop
2
(V Bd)2j cos(2�)j: (50)

Both equations (48) and (50) can be used to determine Verdet constant.

In short, we have three three di�erent means of measuring the Farday rotation,
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Method 1. The gradient of the plot of u1 or iac against B for � = 45o results in the Verdet

constant. This is, in fact, the method you have used in previous section. Since, Uo = 2idc
and u1 = iac , Equation (48) is actually Eq. (39) in disguise.

Method 2. Determine the gradient of the least squares-�t line to a plot of u1=Uo against

j sin 2�j for �xed B. Equate the gradient to V Bd and �nd the Verdet constant [6].

Method 3. Determine the gradient of a plot of u2 against B
2 when � = 90o . equate this to

to V 2d2Uo=
p
2 and �nd the Verdet constant.

Q 17. Find the Verdet constant for TGG at 405 nm using methods 2 and 3.
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