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T
he Hartree-Fock Method plays an im-
portant role in atomic physics and quan-
tum chemistry. The present work aims

to briefly discuss the basic concepts of the
Hartree-Fock theory and its basic principles
for ab initio calculations of electronic orbitals
of atoms and molecules within the Born-
Oppenheimer approximation.

Introduction

If all relativistic effects are neglected and the Born-
Oppenheimer approximation is used, the electronic
Hamiltonian of a hydrogen atom can be written in
atomic units as follows (Z = 1):

Ĥ = −1

2
∇2 − Z

R̂2
. (1)

The solutions for the correspondent eigenval-
ues equation can be obtained analytically [1]
by means of the separation of variables ansatz
(ψ(~r) = R(r)A(θ, φ)), where the angular dependence
happens to be the spherical harmonics Yl,ml

(θ, φ)
and the radial dependence is given by the solution
of the equation:
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However, for molecules and atoms with more than
one electron, the Hamiltonian needs to take into
account the Coulomb interaction between electrons.
For a molecule with N electrons and M nuclei at posi-
tions ~RK and atomic numbers ZK (K = 1, 2, ...,M),
the Hamiltonian assumes the form:
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Ĥ =
N∑
i=1
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−1
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ZK

riK

)
+

N−1∑
i=1

N∑
j=i+1

1

rij
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where riK =
∣∣∣~ri − ~RK

∣∣∣ and rij = |~ri − ~rj |.
Note that the Schrödinger equation for this Hamil-

tonian is not separable due to the repulsion term
1/rij . Additionally, the spherical symmetry is lost if
there is more than one atom. There are no known
solutions for these cases and the best approach possi-
ble to solve this problem is to calculate numerically
approximate wave functions.

One of the most well-stablished methods for cal-
culating approximate solutions for the Schrödinger
equation for atoms and molecules is the Hartree-Fock
Self-Consistent Field (SCF) Method. The next ses-
sion presents the theory that preceded it: the Hartree
Method.

The Hartree SCF Method

The Hartree product

In order to find a way to write the total wave function
for multiple electrons, it is considered a system of N
noninteracting electrons in the presence of a given
potential V (~r) with the Hamiltonian of the form:

Ĥ =
N∑
i=1

ĥ(i), (3)

where

ĥ(i) = −1

2
∇2

i + V (~ri).

The operators ĥ(i) have a set of eigenfunctions that
are spatial orbitals ϕj(~ri), i.e., ĥ(i)ϕj(~ri) = εjϕj(~ri).
Since the Hamiltonian is a sum of one-electron Hamil-
tonians, it is possible to show that an acceptable
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answer for the total wave function of the system is
a simple product of the spatial orbitals describing
each electron:

Ψ(~r1, ~r2, ..., ~rN ) = ϕa(~r1)ϕb(~r2)...ϕk(~rN ), (4)

This ansatz is called the Hartree product and:

〈Ψ|Ĥ|Ψ〉 = E0 = εa + εb + ...+ εk (5)

assuming orthonormalized spatial orbitals and hence
a normalized total wave function Ψ(~r1, ..., ~rN ).

First-order perturbation

Recalling the perturbation treatment of the helium
atom [2], it is possible to obtain a zeroth-order
approximation solution for many-electron atoms and
molecules by solving the problem with the assump-
tion of noninteracting electrons and then calculating
a correction for the ground state total energy using
the perturbation theory. I.e., neglecting the interac-
tion between electrons, the Hamiltonian can be writ-
ten as shown in Eq. 3, where each ĥ(i) (i = 1, 2) has
the form of Eq. 1 with Z = 2. The spatial orbitals can
be calculated analytically (a maximum of two elec-
trons can occupy a same orbital because of the Pauli
exclusion principle) as commented in the previous
session and the zeroth-order approximation energy is
the sum of the energies of each electron (Eq. 5). Then,
a correction ∆E in the energy can be calculated using
the first-order correction in the perturbation theory,
where the perturbation is the Coulomb potential be-
tween the electrons: ∆E = 〈Ψ|1/r12|Ψ〉. Using the
Hartree Product ansatz :

∆E =

∫
d3r1

∫
d3r2ϕ1(~r1)ϕ2(~r2)

1

r12
ϕ1(~r1)ϕ2(~r2)

=

∫
d3r1

∫
d3r2

[
ϕ∗1(~r1)ϕ

∗
2(~r2)

1

r12
ϕ1(~r1)ϕ2(~r2)

]
Generalizing for the N electrons case:

∆E =

N−1∑
i=1

N∑
j=i+1

〈Ψ|1/rij |Ψ〉

=
N−1∑
i=1

N∑
j=i+1

∫
d3ri

∫
d3rjϕ

∗
i (~rj)ϕ

∗
j (~rj)×

1

rij
ϕi(~rj)ϕj(~rj).

(6)

Variational theorem

The variational theorem states that: given a time
independent Hamiltonian Ĥ with a discrete spectrum
of eigenvalues whose lowest eigenvalue is the energy
ε0 and given any normalized state |φ〉:

〈φ|Ĥ|φ〉 ≥ ε0. (7)

This relation can be easily proved by expanding the
state |φ〉 in terms of the complete and orthonormal
set {|ψi〉} of eigenfunctions of Ĥ and calculating the
expected value of energy.

|φ〉 =
∑
i

ci |ψi〉 =⇒ 〈φ|Ĥ|φ〉 =
∑
i

c∗i ciεi ≥ ε0,

where the equality is true only if |c0| = 1 and cj = 0
(j = 1, 2, ...), i.e., |φ〉 = |ψ0〉.

This means that no trial function will have an
expected energy value lower than the ground state
energy of the system. The variational theorem is
very important because it gives rise to the varia-
tional method, where a trial function φ(~r) = 〈~r|φ〉 is
chosen with one or more free parameters that will
be calculated to minimize the value of Et = 〈φ|Ĥ|φ〉.
The function that minimizes Et will be the best
approximation for the ground state wave function
and the quality of the approximation is given by the
quality of the chosen trial function φ(~r) or basis of
functions {φn(~r)}.

The Hartree method

The Hartree method goes a few steps beyond the
perturbation theory and is essentially variational. It
looks for a convergent solution calculating iteratively
the coulomb potential produced by the distribution
of charges given by the probability density obtained
from the spatial orbitals (Self-Consistent Field).

Hartree developed the SCF method by intuitive
physical arguments: each electron is governed by
a single-particle Schrödinger equation experiencing
the Coulomb potential from the nuclei and from the
N − 1 other electrons [3].

The procedure to calculate the wave functions
starts with one zeroth-order approximation step:
choosing trial variational spatial orbitals ϕi(~ri) for
each electron, calculating the value for the variational
parameters that minimize 〈ϕi|ĥ(0)(i)|ϕi〉 to obtain

ϕ
(0)
i = ϕi where ĥ(i) is the one-electron Hamiltonian

for the electron i:
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ĥ(i) = −1

2
∇2

i −
M∑

K=1

ZK

riK
. (8)

The next iteration will calculate, for one electron
at a time, the variational parameters that minimize

〈ϕi|ĝ(1)SCF(i)|ϕi〉 to find ϕ
(1)
i = ϕi, where†:

ĝ
(1)
SCF(i) = ĥ(i) +

∑
j 6=i

υ
(1)
ij (~ri) (9)

and υij is the potential experienced by the electron
i and produced by the electron j.

υ
(1)
ij (~ri) =

∫
d3rj
|ϕ(0)(~rj)|2

rij
.

For the n-th iteration:

υ
(n)
ij (~ri) =

∫
d3rj
|ϕ(n−1)(~rj)|2

rij
(10)

The calculation continues until there are no sig-
nificant changes in the results from one iteration to
the next. After convergence, the final set of orbitals

{ϕ(f)
i } gives the approximate wave function.

In the SCF approximation, the energy of the atom
is not equals to:

N∑
i=1

〈ϕ(f)
i |ĝ

(f)
SCF(i)|ϕ(f)

i 〉

because in this case the electronic repulsion potential
is summed twice. The total energy E is calculated
by 〈Ψ|Ĥ|Ψ〉 with Ĥ given by Eq. 2.

E =
N∑
i=1

〈Ψ|ĥ(i)|Ψ〉+
N−1∑
i=1

N∑
j=i

〈Ψ| 1

rij
|Ψ〉

E =
N∑
i=1

〈ϕ(f)
i |ĥ(i)|ϕ(f)

i 〉+

+

N−1∑
i=1

N∑
j=i+1

∫
d3ri

∫
d3rjϕ

(f)∗
i (~rj)ϕ

(f)∗
j (~rj)×

1

rij
ϕ
(f)
i (~rj)ϕ

(f)
j (~rj).

(11)

This result is very similar to the result obtained
using the first-order correction in the perturbation
theory (Eq. 6). The great improvement obtained in
using the Hartree method is that the orbitals are
iteratively calculated.

†The index (n) stands for the n-th iteration.

However, there are intrinsic problems with the
Hartree method. Even if no more than two electrons
are put in each each spatial orbital, there is no way
to write an antisymmetric total wave function with
the Hartree product ansatz to satisfy the strong
statement of the Pauli exclusion principle. This
problem was pointed and corrected by Vladmir Fock
and John Slater, giving rise to the Hartree-Fock
method.

The Hartree-Fock SCF Method

Spatial orbitals and spin orbitals

An orbital is defined by the wave function of a single
electron. The spatial distribution of electrons in a
molecule can be described by spatial orbitals ϕ(~r),
where the probability density to find the electron at
a given position ~r is |ϕ(~r)|2.

However a spatial orbital is not sufficient to com-
pletely describe an electron since it is necessary to
specify its spin. A complete set to describe this
quantity is composed by two orthonormal functions
α(ω) and β(ω) representing the spins up and down
respectively. It is possible to define a function which
describes simultaneously the spin and the spatial
distribution of the particles. Such a function is
called a spin orbital and will be represented as
χ(~x) = χ(~r, ω).

For each spatial orbital ϕ(~r) there are two possible
spin orbitals:

χ(~x) =

{
ϕ(~r)α(ω)

ϕ(~r)β(ω)
(12)

For a more detailed discussion refer to [4].

Slater determinants

The Pauli exclusion principle states that a system
of indistinguishable fermions should be described
by a antisymmetric total wave function. For a two-
electrons case, the antissymetric wave function can
be written as follows:

Ψ(~x1, ~x2) =
1√
2

[χ1(~x1)χ2(~x2)− χ1(~x2)χ2(~x1)] .

(13)

For the N electrons case, the antissymetric wave
function can be written as a Slater determinant of
spin-orbitals:
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Ψ(~x1, ~x2, ..., ~xN ) =

=
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(~x1) χ2(~x1) · · · χN (~x1)
χ1(~x2) χ2(~x2) · · · χN (~x2)

...
...

. . .
...

χ1(~xN ) χ2(~xN ) · · · χN (~xN )

∣∣∣∣∣∣∣∣∣ .
(14)

The Fock operator

Considering a system with two electrons and a given
state |φ〉 written as the Eq. 13, the expected energy
value E = 〈φ|Ĥ|φ〉 is:

E =
1

2

∫
d~x1

∫
d~x2 [χ∗1(~x1)χ

∗
2(~x2)− χ∗1(~x2)χ∗2(~x1)]

Ĥ [χ1(~x1)χ2(~x2)− χ1(~x2)χ2(~x1)] ,

where Ĥ is the molecular Hamiltonian given by Eq. 2.
Thus,

E = 〈1|ĥ|1〉+ 〈2|ĥ|2〉+

+

∫
d~x1

∫
d~x2[χ

∗
1(1)χ∗2(2)

1

r12
χ1(1)χ2(2)−

−χ∗1(1)χ∗2(2)
1

r12
χ1(2)χ2(1)],

where 〈i|ĥ|i〉 =
∫
dxiχ

∗
i (~xi)ĥ(i)χi(~xi).

Back to the N electron case, it is possible to see
that minimizing E is the equivalent [4] to solving the
eigenvalues equation:

f̂(i)χi(~xi) = εiχi(~xi), (15)

where

f̂(i) = ĥ(i) +
∑
j 6=i

[Jj(i)−Kj(i)] , (16)

Jj(i)χi(~xi) =

[∫
d~xjχ

∗
j (~xj)

1

rij
χj(~xj)

]
χi(~xi),

(17)
and

Kj(i)χi(~xi) =

[∫
d~xjχ

∗
j (~xj)

1

rij
χi(~xj)

]
χj(~xi) (18)

The operators J and K are the Coulomb and
exchange operators. The operator f̂(i) is called the
Fock operator.

The Hartree-Fock Method

The Fock operator is an approximation for the one-
electron Hamiltonian added by the effective potential
generated by the other electrons. Somehow, ĥ(i) is

an improved version of the operator ĝ
(n)
SCF(i) (Eq. 9) in

the Hartree method because the Fock operator takes
into account the fermionic nature of the electrons.
The algorithm of the calculations using the Hartree-
Fock Method follows basically the same steps of the
Hartree method.

Roothan Equations

One possible set of trial functions to perform the
Hartree-Fock calculations is a set of the atomic or-
bitals. This means that each electronic orbital will
be a Linear Combination of Atomic Orbitals:

χi =
B∑

k=1

Ci
k χ

OA
k . (19)

By writing this into the Hartree-Fock equations it
is possible to obtain the Roothan [5] equations:

FC = SCε, (20)

where F is the matrix with elements 〈χi|f̂ |χj〉 called
Fock matrix, S is the overlap matrix of the basis
functions (〈χAO

i |χAO
j 〉), ε is the matrix of orbital

energies and C is the matrix of coefficients to be
varied to minimize the functional 〈φ|Ĥ|φ〉.
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