Pure decoherence of a qubit
We are going to start by writing the Hamiltonian of a single qubit:

H = Ho+hY wblb,

+hoo Y (gabs + gbl) -

S

Here we are going to assume that

[Ho,o.] = 0.
Therefore, in the interaction picture we have
Hr(t) = ho, Z (95 exp (—iwst) bs + gibl exp (iwst)]
and the evolution operator satisfies
mluiw) = HOU ).

dt

Now we are going to prove that the evolution operator is given by

Ur(t) = exp|C(t)]exp[—o.B(t)]explo.A(t)],
where
o) = 3 lgl MHeXpw(Q_ oet) =1
B = S gt b,
A (t) = ZQS’fs’ (t) bs’a
and
£ = exp (—iwst) — 1'

Ws

Hence, after doing all the calculations, we obtain, by direct differentiation and boson operator algebra,

d

Zhdt Ur(t) = ho, ES gabl exp (iwst) + gsbs exp (—iwst) | Uy (),
that is,
. d
ZH%UI (t) = H[ (t) U[ (t) .



Since now we have the evolution operator, we need to calculate the evolution of the qubit initial state. Let us assume
that, at ¢ = 0, the qubit is in the state

¥ (0)) = col0)+ecill),
with
leol* + |er]* = 1.
The initial qubit density operator is thus

ps(0) = [¥(0)) (v (0)|
= |col” |0) (0] + coci |0) (1]
+eger |1) 0] + e 1) (1.

Let us take a thermal state for the bath:

1
pp(0) = — €XP (—Bthsbibs> ,

where

Thus, at ¢ = 0, we have

We know that

pr(t) = Ur(t)ps(0)ps(0)U](
= Jeol* Uz (£)10) {0 p5 (0) U] (
+eociUr (1) |0) (1] ps (0) U (2)

+eeaUs (t) 1) (0] ps (0) U (2)
+lePUs (8) 1) (1] p5 (0) UF (1),

t)
Uj (t)

= =

that is, using a more appealing notation (at least to me),

pr(t) = e Ui (t)]0) pp (0) (0] U} (2)
+cociUr (1) 10) ps (0) (1] U] (1)
+egerUs () [1) ps (0) (0] U] (2)
+le P U (8) 1) ps (0) (1| U (1)

Some more algebra and we obtain

Ur (1) 10) pi (0) (01U} (£) = 10) (0] exp [C* ()] exp [C (1)] exp [~ B (t)]
x exp [A (1)) p (0) exp [AT (8)] exp [~ BT (1)]



U (6)10) ps (0) AU} (1) = [0) (Lexp [C* (1)] exp[C (1) exp [~ B (1)
% exp[A (1) pz (0) exp [~ AT (1)] exp [BY ()],

Up (t) 1) p (0) (0| U} (2)

1) (Ol exp [C (#)] exp [C' ()] exp [B (t)]
p

x exp [—A (t)] pp (0) exp [AT (t)] ex [—BT (t)] ,
and
U (t) 1) pp (0) (1| Uf (1) = [1) (1] exp [C* (t)] exp [C' (¢ )]exp (B (t)]
x exp [~ A ()] pg (0) exp [ AT (t)] exp [BT (1)] .
But,
c) = Z |gs|2 twet + expcfg—iwst) -1
and, hence,
_ Z e —iwst + e):f; (fwst) — 17
so that
C*() _ 22| |2COSC<)5 —1

We need now calculate Trg [pr (¢)] . Then, let us use the following coherent-state expansion of the bath state:

pe@ = [Tt [dos e (<20 ) ) o,

where

It immediately follows that

0) (0] exp [C”* (1) exp [C (1)
x JTexp [l9. £ ()]

10) (0] exp [C ()] exp [C (1)
< exp[~C" () — C ()]
10) (0]

Tes [Us (8)[0) pi (0) (0 U (1)

and

Tes |Ur (1) 11) o5 (0) (TF (0] = 1)1,
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as expected. We also calculate:
Teg [Ur (1) 10) s (0) (11U} (0] = 10) (1] exp [C° (6] exp[C (8)) Tr {exp [~ B (1)
x explA (8)] pi (0) exp [~AT (8)] exp [BT (1)]}

With some more algebra, we obtain

o [Uf (£)10) p5 (0) (1] U} (t)} = 10) (1] exp l42| 2005%—1]

" H <§s> [ s e ()

X exp [295fs (t) Qs — 2g:f: (t) Oé:] .

Calculating the integral finally gives

Ton U1 (910) o ) (U] )] = 10) (U exp [42' w—l]
X exp l—4z (ng) |gs|2 \fs (t)|2]
= ) (1] exp [4Z| S|2 cos (wst —1]

< exp [82 (ne) 195 1‘("”)] .

2
Wy

We now take the continuum limit using an ohmic spectral distribution:

cos (wst) — 1 o cos (wt) — 1
zmi | S la 5w -
O S
/ i J (@) cos (wt) — 1

0

w2

o t)—1
/ o o exp (_W> cos wh) — 1
0 We w
e t)—1
n/ dw exp (_w> S8t — (wt)
0 We w

n
—5In(1+wit?).

where we have used
Z |gs|2 6 (w— ws)

and

10 = wen(-2)

C



The reduced density operator of the qubit is, therefore, given by

Trp [pr ()] = leol*[0) (0]

(1 + w2t2)*"

et |0 (1 exp [SZ (ns) s cos (wst) — 1

el O o [SZ (na) g S WD) =1

(1 + w2e2)*"
2
+ lea|” 1) (1.

We see, therefore, that we need to calculate the quantity

F) = 8 n) g2 @) —1

2
Ws

87
| (52 + i2Z))
= In
kBT |
( hw, )
Let us define the decoherence function by
kot cent it )
(52 + i)
h(t) =

(1+ w2t2) [(’;BTT)'T

Thus, in terms of matrix notation, we can write the reduced qubit density matrix as

walpro] = (o).

() el

The reader is invited to provide the steps that have been omitted in the above calculations.



