
From Newton's second law to Liouville's equation and back in an intuitive

way

Let us start by looking at a classical particle and its Newtonian dynamics. Furthermore, let us assume that the force that
acts on the particle, of mass m, is conservative. In one dimension, to simplify the analysis, we have

F = − ∂

∂z
V (z) ,

where F is the force along the z-axis and V (z) is the potential energy whose spatial derivative gives the force. Newton's
second law gives

dp

dt
= − ∂

∂z
V (z) . (1)

In the phase space we can choose a region R given a, say, compact set of initial conditions, that is, at t = 0. If we let each
one of the points in R evolve during a time t > 0, we are going to have the same volume of phase space as we had in R,
according to Liouville's theorem. In this case of a single spacial dimension, we actually mean area of phase space, instead
of volume, but the word volume is the standard for all dimensions, even if we have more than three spatial dimensions
(for more than one particle comprising the system).

Now, after a time interval t > 0 has elapsed, let us choose a particular phase-space volume dzdp about the point (z, p)
and let ρcl (z, p, t) dzdp be the probability of �nding the particle inside the volume element dzdp. If, instead, we think of
ρcl (z, p, t) as the density of N non-interacting particles at the point (z, p) at time t, we see that they left, at time t = 0,
the region R from the neighborhood of the point (zcl (0) , pcl (0)) , where zcl and pcl are the functions of time describing
the trajectory described by Eq. (1) that, at time t, ends up at the phase-space point (z, p) . By Liouville's theorem, if we
have dzdpρcl (z, p, t) particles in the region of volume dzdp about the point (z, p) at time t > 0, these are the particles
that came from the region of phase-space volume value also given by dzdp, but centered about the point (zcl (0) , pcl (0))
at t = 0. Therefore, the number of particles about the two di�erent points of phase space is the same, that is,

d

dt
[dzdpρcl (zcl (t) , pcl (t) , t)] = 0

and, since dzdp is the same along the whole trajectory of all the N particles, we can write:

d

dt
ρcl (zcl (t) , pcl (t) , t) = 0,

or, equivalently,

dzcl
dt

∂

∂zcl
ρcl (zcl, pcl, t) +

dpcl
dt

∂

∂pcl
ρcl (zcl, pcl, t) +

∂

∂t
ρcl (zcl, pcl, t) = 0.

Since

pcl = m
dzcl
dt

, (2)

using Eq. (1) we obtain

∂

∂t
ρcl (zcl, pcl, t) +

pcl
m

∂

∂zcl
ρcl (zcl, pcl, t)−

∂V (zcl)

∂zcl

∂

∂pcl
ρcl (zcl, pcl, t) = 0.
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Therefore, for any point (z, p) of phase space at time t, the dynamics of the probability distribution function is written as

∂

∂t
ρcl (z, p, t) +

p

m

∂

∂z
ρcl (z, p, t) =

∂V (z)

∂z

∂

∂p
ρcl (z, p, t) , (3)

which is the classical Liouville equation.
Now we want to show how to obtain the force out of the distribution function and its equation of motion. The same

procedure will be used when we deal with the force acting on the atom that we want to decelerate, for example. Let
us consider an initially very localized distribution centered at point (z0, p0) of phase space. Because the basic volume
element associated with non-negligible values of the distribution function is going to be conserved, since the dynamics
is Hamiltonian, then the distribution will propagate through phase space as time passes, but will remain localized as at
t = 0. Because of this and supposing the time evolution is �nite, the function ρcl (z, p, t) is going to tend to zero as the
magnitude of z or p tends to in�nity. Hence, we intuitively see that

ˆ +∞

−∞

ˆ +∞

−∞
dzdp zρcl (z, p, t) ≈ zcl (t)

ˆ +∞

−∞

ˆ +∞

−∞
dzdp ρcl (z, p, t)

≈ zcl (t) , (4)

if we normalize the distribution function so that

ˆ +∞

−∞

ˆ +∞

−∞
dzdp ρcl (z, p, t) = 1. (5)

We also have:

ˆ +∞

−∞
dp

ˆ +∞

−∞
dz z

[
p
∂

∂z
ρcl (z, p, t)

]
=

ˆ +∞

−∞
dp p

ˆ +∞

−∞
dz

∂

∂z
[zρcl (z, p, t)]

−
ˆ +∞

−∞

ˆ +∞

−∞
dzdp pρcl (z, p, t)

≈ −pcl (t) , (6)

where we used

ˆ +∞

−∞
dz

∂

∂z
[zρcl (z, p, t)] = [zρcl (z, p, t)]z=∞ − [zρcl (z, p, t)]z=−∞ = 0, (7)

because the probability density goes to zero at in�nite points of phase space, and

ˆ +∞

−∞
dz

ˆ +∞

−∞
dp pρcl (z, p, t) ≈ pcl (t) , (8)

since the distribution function (or probability density) is localized in phase space for all time. In an analogous fashion,
we calculate:

ˆ +∞

−∞

ˆ +∞

−∞
dzdp z

∂

∂p
ρcl (z, p, t) =

ˆ +∞

−∞
dz z

ˆ +∞

−∞
dp

∂

∂p
ρcl (z, p, t)

=

ˆ +∞

−∞
dz z

{
[ρcl (z, p, t)]p=∞ − [ρcl (z, p, t)]p=−∞

}
= 0. (9)
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Thus, multiplication of Eq. (3) by z and integrating over the whole phase space gives, according with Eqs. (4-9),

dzcl
dt
− pcl
m

= 0,

which is just Eq. (2).
We now proceed by multiplying Eq. (3) by p and integrating over phase space. Then,

d

dt

ˆ +∞

−∞

ˆ +∞

−∞
dzdp pρcl (z, p, t) +

1

m

ˆ +∞

−∞

ˆ +∞

−∞
dzdp p2

∂

∂z
ρcl (z, p, t) =

ˆ +∞

−∞

ˆ +∞

−∞
dzdp p

∂V (z)

∂z

∂

∂p
ρcl (z, p, t) ,

giving

dpcl
dt

+
1

m

ˆ +∞

−∞
dp p2

ˆ +∞

−∞
dz

∂

∂z
ρcl (z, p, t) =

ˆ +∞

−∞
dz
∂V (z)

∂z

ˆ +∞

−∞
dp p

∂

∂p
ρcl (z, p, t) . (10)

But,
ˆ +∞

−∞
dz

∂

∂z
ρcl (z, p, t) = [ρcl (z, p, t)]z=∞ − [ρcl (z, p, t)]z=−∞ = 0 (11)

and ˆ +∞

−∞
dp p

∂

∂p
ρcl (z, p, t) =

ˆ +∞

−∞
dp

∂

∂p
[pρcl (z, p, t)]−

ˆ +∞

−∞
dp ρcl (z, p, t)

= [pρcl (z, p, t)]p=∞ − [pρcl (z, p, t)]p=−∞ −
ˆ +∞

−∞
dp ρcl (z, p, t)

= −
ˆ +∞

−∞
dp ρcl (z, p, t) . (12)

Hence, using Eqs. (11) and (12) in Eq. (10), we get

dpcl
dt

= −
ˆ +∞

−∞
dz
∂V (z)

∂z

ˆ +∞

−∞
dp ρcl (z, p, t) = −

ˆ +∞

−∞

ˆ +∞

−∞
dzdp

∂V (z)

∂z
ρcl (z, p, t)

and, using the fact that ρcl (z, p, t) is localized about (zcl (t) , pcl (t)) , this equation is found to be

dpcl
dt

≈ −∂V (zcl)

∂zcl

ˆ +∞

−∞

ˆ +∞

−∞
dzdp ρcl (z, p, t) = −

∂V (zcl)

∂zcl
,

where we have used Eq. (5). We see that this last result is just Eq. (1), as expected. The procedure we have been
depicting here is exactly analogous to the one we will employ when calculating the force acting on the atom, for example.

A crash introduction to the Wigner function and, then, to the Wigner oper-

ator

Let us consider a quantum particle of mass m subject to the potential operator V (Z) , where Z is the position operator.
Before talking about operators here, let us look at the more basic formulation in terms of wave functions. Suppose that at
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t = 0 the state of the particle is described by the wave function ψ (z, 0) . Schrödinger's equation gives the time evolution
of the wave function:

− ~2

2m

∂2

∂z2
ψ (z, t) + V (z)ψ (z, t) = i~

∂

∂t
ψ (z, t) , (13)

where z, of course, is the point in one-dimensional space where we are calculating the probability amplitude ψ (z, t) of
�nding the particle. As usual, the probability of �nding the particle within the region of size dz about the point z is
given, according to the Born principle, by |ψ (z, t)|2 dz. Similarly, the probability of �nding the particle within the region

of size dp about the momentum p, in momentum space, is given by
∣∣∣ψ̃ (p, t)

∣∣∣2 dp, where ψ̃ (p, t) is the Fourier transform of

ψ (z, t) , namely,

ψ̃ (p, t) =
1√
2π~

ˆ +∞

−∞
dz ψ (z, t) exp

(
−ipz

~

)
. (14)

We could say that the Fourier transform of the position wave function changes the position description of the particle to
one in terms of its momentum.

Using the formalism of wave functions we can de�ne the density-matrix elements in position space as

ρ (z, z′, t) ≡ ψ (z, t)ψ∗ (z′, t) , (15)

where ψ∗ (z, t) stands for the complex conjugate of ψ (z, t) . Notice that Eq. (15) is the density-matrix element, taken
between the position eigenvalues z and z′, for a pure quantum state represented by the wave function ψ (z, t) . For z = z′,
the density-matrix element ρ (z, z, t) is just the probability density for �nding the particle at position z at instant t. For
z 6= z′, however, the element ρ (z, z′, t) is what is called the coherence, let us say, between positions z and z′. Incidentally,
it might be illustrative to remember that

|ψ (t)〉 =

ˆ +∞

−∞
dz |z〉 〈z|ψ (t)〉

=

ˆ +∞

−∞
dz |z〉ψ (z, t) .

Therefore, if we focus attention at a central position z and look at the coherence between two other points separated by
a distance |s| , but symmetrically located in relation to this particular central position z, we have

ρ (z + s/2, z − s/2, t) = ψ (z + s/2, t)ψ∗ (z − s/2, t) . (16)

Equivalently, we can also say that, given a reference position z, Eq. (16) describes, relative to it, the coherences between
the points a distance |s| /2 apart from z. Now, classically, if a particle passes through two di�erent points in space, then
we conclude that the particle has momentum (and, of course, it passes through each point at a di�erent time). Could our
coherences, somehow, be related with the momentum description of the quantum state? [I am being very imprecise here,
but my intention is to make the de�nition of the Wigner function more intuitive.] We then can take the Fourier transform
of Eq. (16) with respect to s and keep z intact to get:

w (z, p, t) ≡ 1

2π~

ˆ +∞

−∞
ds ρ (z + s/2, z − s/2, t) exp

(
−ips

~

)
=

1

2π~

ˆ +∞

−∞
dsψ (z + s/2, t)ψ∗ (z − s/2, t) exp

(
−ips

~

)
, (17)

4



where w (z, p, t) is called the Wigner function. It is now seen that

ˆ +∞

−∞
dpw (z, p, t) =

ˆ +∞

−∞
dsψ (z + s/2, t)ψ∗ (z − s/2, t)

[
1

2π~

ˆ +∞

−∞
dp exp

(
−ips

~

)]
=

ˆ +∞

−∞
dsψ (z + s/2, t)ψ∗ (z − s/2, t) δ (s) = |ψ (z, t)|2

and, using the inverse of Eq. (14), namely,

ψ (z, t) =
1√
2π~

ˆ +∞

−∞
dp ψ̃ (p, t) exp

(
i
pz

~

)
,

we also obtain

ˆ +∞

−∞
dz w (z, p, t) =

ˆ +∞

−∞
ds

1

2π~

ˆ +∞

−∞
dz ψ (z + s/2, t)ψ∗ (z − s/2, t) exp

(
−ips

~

)
=

ˆ +∞

−∞
ds

1

(2π~)2

ˆ +∞

−∞
dz

ˆ +∞

−∞
dp1 ψ̃ (p1, t) exp

[
i
p1
~

(z + s/2)
]

×
ˆ +∞

−∞
dp2 ψ̃

∗ (p2, t) exp
[
−ip2

~
(z − s/2)

]
exp

(
−ips

~

)
,

that is,

ˆ +∞

−∞
dz w (z, p, t) =

ˆ +∞

−∞
dp1

ˆ +∞

−∞
dp2 ψ̃ (p1, t) ψ̃

∗ (p2, t)

{
1

2π~

ˆ +∞

−∞
dz exp

[
i
z

~
(p1 − p2)

]}
×
{

1

2π~

ˆ +∞

−∞
ds exp

[
−i s

~

(
p− p1 + p2

2

)]}
=

ˆ +∞

−∞
dp1

ˆ +∞

−∞
dp2 ψ̃ (p1, t) ψ̃

∗ (p2, t) δ (p1 − p2) δ
(
p− p1 + p2

2

)
=
∣∣∣ψ̃ (p, t)

∣∣∣2 .
Thus we see that the Wigner function gives a distribution in phase space analogous to the distribution ρcl (z, p, t) of the
previous section. If integrated over p, it gives the probability density to �nd the particle about the point z, irrespective
of its momentum, and, if integrated over z, it gives the probability density to �nd the particle about momentum p,
irrespective of its position. However, the Wigner function is not, in general, positive for all points in phase space; it is not
a probability distribution.
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