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The renormalized Numerov method applied to calculating 
bound states of the coupled-channel Schroedinger equational 
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The renormalized Numerov method, which was recently developed and applied to the one-dimensional 
bound state problem [B. R. Johnson, J. Chern. Phys. 67, 4086 (1977)], has been generalized to compute 
bound states of the coupled-channel Schroedinger equation. Included in this presentation is a 
generalization of the concept of a wavefunction .node and a method for detecting these nodes. By utilizing 
node count information it is possible to converge to any specific eigenvalue without the need of an initial. 
close guess and also to calculate degenerate eigenvalues and determine their degree of degeneracy. A 
useful interpolation formula for calculating the eigenfunctions at nongrid points is also given. Results of 
example calculations are presented and discussed. One of the example problems is the single center 
expansion calculation of the IS<Tg and 2s<Tg states of Hi-

I. INTRODUCTION 

In a previous paper! we developed two new numerical 
procedures, the log derivative and renormalized Numerov 
methods, for calculating the bound state solutions of the 
one-dimensional Schrodinger equation. In this report 
the renormalized Numerov method (version B) which 
was the most efficient and easiest to program, is gen
eralized to calculate bound state solutions of the coupled
channel Schrodinger equation. (The generalization of 
the log derivative method will also be discussed briefly 
in Appendix A.) This method has several noteworthy 
features. It is quite efficient of computer time. No 
initial guess close to the desired eigenvalue is required. 
Each solution is characterized by a unique "generalized 
node count, "therefore, we can be sure we have not in
advertently skipped any solution. It can calculate de
generate eigenvalues and indicate their degree of de
generacy. The method is very stable, it converges to 
the solution specified by a given node count, even in 
cases of multiple classically allowed regions separated 
by classically forbidden regions. Finally, no overflow 
or linear dependence problems occur, so no special 
programing precautions have to be taken in this regard. 

This paper is divided as follows. In Sec. II we formu
late the problem and specify the conditions that the 
wavefunction must satisfy, a generalized node count is 
defined and the renormalized Numerov method for cal
culating eigenvalues is presented. Sec. III discusses 
the calculation of the eigenfunctions. Included is a gen
eralization of the interpolation method derived in Ref. 
1 for calculating the wavefunction at nongrid points. 
Finally, the results of several example calculations and 
a general discussion is presented in Sec. IV. 

II. EIGENVALUE CALCULATIONS 

A. Wavefunction methods 

In many cases a multidimensional quantum mechanical 
problem can, to a good approximation, be transformed 
to a system of M coupled ordinary second order differ-

a'This work was supported by the United States Air Force under 
Contract No. F04701-77-C-0078. 

ential equations. Several examples of this will be given 
in Sec. IV. The resulting "coupled-channel Schrodinger 
equation" is most conveniently written in the following 
matrix differential equation form: 

[I -b +Q(X}] I/I(x) = 0 
where 

Q(x} = (2JJ./1i 2) (EI- V(x)] . (2) 

Here, I is the unit matrix, JJ. is the reduced mass, V(x) 
is the symmetric potential matrix and E is the energy. 
The wavefunction I/I(x) is a column matrix (or vector). 
Acceptable bound state wavefunctions must be continu
ous together with their first derivatives and must van
ish at the boundaries 

I/I(x) ;.;: O. 

If x is a radial coordinate, the boundary condition at 
- 00 is replaced by 

1/1(0) = O. 

(3) 

The wavefunctions (eigenfunctions) that satisfy these 
conditions can be calculated by an iterative procedure. 
A trial energy E is chosen along with trial values of the 
slopes of the wavefunction at the initial and final bound
aries. Equation (l) is then integrated outward from the 
"inner" boundary and inward from the "outer" boundary 
to a common matching point. In general, the wavefunc
Hon and its first derivative calculated this way will not 
be continuous across the matching point and therefore 
not an eigenfunction. FOX2

,3 has devised an elaborate 
method for calculating new trial values of the energy 
and the initial derivatives at the boundaries which re
duce the magnitude of the discontinuity. The calcula
tion is iterated and eventually converges at a quadratic 
rate to an eigenvalue. 

Gordon4,5 has devised a much simpler method which 
entirely avoids the problem of searching for the correct 
values of the initial boundary derivatives. Instead of 
calculating a single solution vector USing trial values 
for the derivatives, he calculates M linearly indepen
dent solutions with arbitrary (but linearly independent) 
derivatives and, of course, zero value at the bound-
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aries. These M solution vectors can be grouped to
gether to form the M columns of a single Mx M square 
matrix wavefunction w(x) which satisfies the differential 
equation 

~ ~ + Q(X)] w(x) = O. (5) 

[This equation differs from Eq. (1) only in that the col
umn vector !JI(x) has been replaced by the square matrix 
w(x).] Since the columns of iIr(x) are linearly indepen
dent, they span the space of all possible initial deriva
tives. Therefore, the correct column vector wavefunc
tion must be expressible as some (unknown) linear com
bination of the columns of iIr(x) i. e. , 

!JI(x) =w(x). C, (6) 

where C is a column vector of constant coefficients. 

The Gordon procedure is to assume a trial value for 
the energy and then integrate Eq. (5) outward and in
ward to the common matching point xm • The outward 
solution which approaches xm from the left is designated 
w,(x) and the inward solution which approaches from the 
right is iIr/x). If the trial energy is an eigenvalue, the 
eigenfunction vector is given by 

(7) 

and 

(8) 

where I and r are, as yet, unknown vectors. At the 
matching point the continuity of the eigenfunction and 
its first derivative require that 

(9) 

and 

(10) 

These two matching conditions were combined by Gor
don4 in a super-matrix equation 

(iIrl,(Xm)iIrr~Xm) )( I )= O. 
iIr I (xm) W r(xm) - r 

(11) 

The condition that Eq. (11) have a nontrivial solution is 
that the determinant of coefficients vanish, i. e., 

(12) 

Thus, the determinant d(E), which is a function of the 
trial energy E, will vanish at each of the eigenvalues. 
The search for the zeros of d(E) can be carried out by 
any standard one-dimensional search method. Once an 
eigenvalue is located, the set of linear equations, Eq. 
(11), can be solved for the vectors I and r (to within 
an overall arbitrary normalization factor). These are 
then substituted in Eqs. (7) and (8) to obtain the eigen
function vector. [The transformation of the Gordon pro
cedure, described above, to the log derivative matrix 
formulation is discussed in Appendix A.] 

The method described above has several limitations, 
We must start with an initial energy guess fairly near 
the eigenvalue that we wish to calculate, i. e., we can-

not converge to a specific eigenvalue (for example, the 
fourth eigenvalue above the ground state) from afar. 
Another problem is that we cannot be sure if we have 
skipped any of the eigenvalues. In the one-dimensional 
case both these limitations were overcome by counting 
nodes and applying the oscillation theoremS which states 
that if the eigenvalues are arranged in ascending order, 
then the eigenfunction l/Jn(x) (n = 0,1, 2, ••• ) correspond
ing to the (n + 1)th eigenvalue En has n nodes. In the 
multichannel case we can generalize the definition of 
a node so that the same methods can be applied. 

The definition of "node" that we have found useful is 
that it is a zero of the determinant function I iIr(x) I. In 
order to see why this is a useful definition imagine the 
following problem: At the left boundary place an infinite 
(inpenetrable) potential wall. This is consistent with 
the boundary condition that the wavefunction is zero at 
this point and does not affect the solution. As the inte
gration of Eq. (5) proceeds from left to right imagine 
another infinite potential wall moving to the right with 
the integration. In the region between the walls the po
tential is just V(X). Initially, all the eigenvalues of 
this imaginary problem are very large and positive, 
but as the walls move apart the eigenvalues monotonical
ly decrease and approach the eigenvalues of the original 
problem as the right-hand wall approaches the final 
boundary. As the eigenvalues decrease, those that are 
eventually less than the trial energy E must at some point 
cross this energy. The position of the right-hand wall, 
when one of the eigenvalues of the imaginary problem 
just equals the trial energy E, is determined by the re
lation I w(x) I = O. This should be obvious, since this 
is the necessary and sufficient condition to calculate a 
wavefunction vector that is zero at this point and thus 
satisfy the coundary conditions at the right-hand wall. 
Thus, we conclude that the number of eigenvalues less 
than or equal to the trial energy E is just equal to the 
number of nodes of the function I iIr(x) I . 

Each discrete eigenvalue is labeled by assigning to it 
the integer n which is equal to the number of eigenvalues 
lying below it in value. This label is unique for the non
degenerate eigenvalues. Degenerate eigenvalues are 
assigned g consecutive integers from n through n + g - 1 
where g is the degree of degeneracy. It is obvious from 
our previous discussion that by counting the number of 
nodes of a trial solution we can determine if the trial 
energy E is above or below a specific eigenvalue En 
which has been labeled in this way. If the node count 
is greater than n, then E?:. En and if the node count is 
less than or equal to n then E< En. These relations 
are the basis of a bisection procedure for calculating 
En. The initial step of this procedure is to calculate 
by some simple method crude upper and lower bounds, 
En and E L, such that E L < En ::5 En. Set the trial energy 
E equal to 

E= 0.5 (EL + En), (13) 

then integrate Eq. (5) outward and count the number of 
nodes of I iIr(x) I. If the node count is greater than n 
set En = E and if it is less than or equal to n set EL = E. 
Calculate a new trial energy using Eq. (13) and repeat 
the process. This method will converge linearly to the 
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desired eigenvalue. The iteration is stopped when EH 

- EL < E where E, the tolerance factor, is some preset 
small (positive) number. This procedure will work 
even if the eigenvalue is degenerate. The degree of 
degeneracy is given by the difference in node count for 
the final EH and EL values. [If two nondegenerate eigen
values happen to be separated by less than the preset 
tolerance factor E, this method will usually indicate 
that these eigenvalues are degenerate.] 

Since linear convergence is rather slow, the best 
procedure is to combine the node count method, which 
can converge to a particular eigenvalue from afar, with 
a fast converging method such as the Gordon4 proce
dure. The node count method is used to isolate a single 
eigenvalue and get sufficiently close to it, then the fast 
converging method takes over and very quickly con
verges to the desired accuracy. When an eigenvalue is 
one of a degenerate set of eigenvalues, it cannot be iso
lated. In such a case convergence will be entirely by 
·the node count procedure. 

In the one-dimensional problem, for a given energy 
E, the x coordinate can be divided into classically al
lowed and classically forbidden regions separated by 
classical turning pOints. The turning point with the 
smallest (or most negative) value is called the "inner 
turning point" and the one with the largest value is the 
"outer turning point." The region between the inner 
and outer turning pOints is called the "confinement re
gion." The region to the left of (less than) the inner 
turning pOint is the "inner forbidden region" and the 
region to the right of (greater than) the outer turning 
point is the "outer forbidden region." Of course, the 
confinement region can be subdivided by classically 
forbidden subregions contained within it. For some 
problems, i. e., s-wave bound states in a purely at
tractive potential well, there is no inner forbidden re
gion. For such a problem the confinement region is 
from x = 0 to the outer turning point. 

This same discussion can be applied to the mutlichan
nel problem if the definitions are suitably generalized. 
These generalizations were established for the multi
channel JWKB approximation. 7 Diagonalize the potential 
matrix V(x) for all values of x. The result is the diago
nal "adiabatic" potential matrix U(x) with matrix ele
ments UlI(X) , i=l,M. The M equations 

(14) 

are solved for all the real roots xJ' The inner classical 
turning point is the smallest (or most negative) root and 
the outer classical turning point is the largest root. The 
definitions of the inner and outer classically forbidden 
regions and the confinement region are then the same as 
for the one-dimensional case. 

The boundary conditions are given by Eqs. (3) and (4). 
In an actual calculation the integration range extends 
from an initial point Xl to a final point x, and does not 
have to extend between the limits 0 to 00 (or - 00 to 00). 
Rather, it is sufficient for Xl to be located in the inner 
forbidden region and xf to be located in the outer for
bidden region and far enough from the respective turn
ing pOints so that the calculated eigenvalues are insensi-

tive to the values of the wavefunction at XI and x,. If 
there is no inner forbidden region, we must set XI = O. 
Convenient boundary values to use (which are also ap
propriate in the case where xj=O) are Ilr(X/)='It(Xj) =0 
and Ilr' (x/) =Ilr'(x,) = aI where a is an arbitrary number. 

The methods discussed in this subsection could be 
implemented by solving Eq. (5) numerically for 'It(x). 
However, without taking special precautions, this pro
cedure would have severe overflow and linear depen
dence problems. These difficulties do not occur with the 
renormalized Numerov method which is discussed next. 

B. Renormalized Numerov method 

The matrix Numerov algorithm is an efficient method 
that can be used to obtain numerical solutions of Eq. (5). 
The basic formula is the three term recurrence relation 

where 

(16) 

and 

(17) 

Here h is the spacing between the N + 1 equally spaced 
grid points xo, xlo ••. XN and the square matrix Q(x) is 
defined by Eq. (2). Equation (15) is derived by an ob
vious generalization of the derivation of the ordinary 
Numerov algorithm8 to matrix quantities. 

The renormalized Numerov algorithm is derived from 
Eq. (15) by making two transformations. First, define 
the matrix 

Fn = II - Tn] Ilrn 

and substitute into Eq. (15). This gives 

where 

Un = (I - Tnt j (21 + 10Tn). 

Next, define the ratio matrix 

Rn = Fn+j Y,;j. 

(18) 

(19) 

(20) 

(21) 

Substitute this into Eq. (19) to obtain the two term re
currence relation 

(22) 

This is the basic equation of the renormalized Numerov 
method. It can be solved once the value of the initial 
term Ro is specified. The initial grid point is located 
at Xo = XI and the initial values of the wavefunction are 
Ilr(xo) = 0 and Ilr(Xj) * O. (See the discussion of boundary 
values in the previous section.) The corresponding 
value of the inverse of the initial term is R ii j = O. (For 
exceptions to this rule see Appendix D. ) 

The matrix Un, defined by Eq. (20), is symmetric. It 
follows from this and the symmetry of R ii j and also from 
Eq. (22) that the matrix Rn is also symmetric. For 
computational convenience, Eq. (20) can be reformulated 
as a symmetric matrix inversion problem. Define 
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(23) 

then 

Un = 12W~1 -101. (24) 

Thus, at each grid point we must invert two symmetric 
matrices. 9 

In the previous section we described a bisection meth
od of calculating eigenvalues which was based on count
ing the nodes of the function I W(X) I. This method is 
easily implemented in the renormalized Numerov for
malism. In the present discussion we assume only a 
single node between two adjacent grid points. The case 
of multiple nodes will be discussed in Appendix B. It 
follows from Eqs. (18) and (21) (and also from the re
quirementtO that II - Tn I > 0) that I Rn I < 0 only if I w(x) I 
changes sign between xn and xn+t. Since I w(x) I is a 
continuous function it must have a node in this interval. 
It follows that we can count the nodes of I w(x) I by 
monitoring I Rnl and counting the number of times it 
is negative. The calculation of the determinant I Rn I 
at each step adds only inSignificantly to the computation 
time since it can be carried out simultaneously with the 
calculation of the inverse matrix R ~t . 

A fast converging method based on matching inward 
and outward solutions can also be derived. It is the 
multichannel generalization of the renormalized Numer
ov method B used in the one-dimensional problem. 1 
This method is used for the final stages of convergence 
after we have isolated a particular eigenvalue by the 
node count procedure. 

The inward solution is most conveniently expressed 
in terms of the matrix 

A -t 
Rn= Fn-tF n . (25) 

Substituting this into Eq. (19), we obtain the two-term 
inward recurrence formula 

Rn=Un-R~t (26) 

This formula can be iterated down (i. e., for decreaSing 
index n) once the value of the term It N is specified. The 
grid point x N is located at XN = xI and from the discus
sion of boundary values in the previous section, the wave
function has the values W(XN) = 0 and W(XN_l)*O. The 
corresponding value of the inverse of aN is aN1 = O. 

In the Gordon procedure, the inward and outward solu
tions and their first deviatives were required to be equal 
at the matching point xm (see Eqs. (9) and (10)]. An al
ternative requirement is that the inward and outward 
solutions are equal at the two adjacent grid points xm 

and xm+t' 

(27) 

and 

(28) 

Multiply Eq. (27) by (I - Tm) and Eq. (28) by (I - Tm+1) 
and use Eq. (18) to obtain 

Fj(xm) -1= Fr(xm) 0 r=f(xm) (29) 

and 

(30) 

The vector quantity f(xn ) is defined to be (this is the vec
tor version of Eq. (18)] 

(31) 

From the definitions of the ratio matrices, Eqs. (21) 
and (25), we can rewrite Eq. (30) in the form 

RmFj(xm) -I =R ;;.t+tFr(xm) - r . (32) 

Then substitute from Eq. (29) to obtain 
A -t 

(Rm - Rm+t) f(xm ) = O. (33) 

Equation (33) will have a nontrivial solution only if 

I A -t I D(E)= Rm-Rm+t =0. (34) 

Thus, the determinant D(E), which is a function of the 
trial energy E, will vanish at each of the eigenvalues. 
The search for the zeros of D(E) can be carried out by 
any standard one-dimensional search method. We have 
used the secant methodt t for this; it is easy to program 
and has a quite adequate convergence rate. As a pre
caution, the convergence of the secant method should 
be monitored, and if it starts to diverge, the program 
can return to the node count procedure to get closer 
to the eigenvalue before trying the secant method again. 
This method is only used as the final stage of conver
gency for nondegenerate eigenvalues. For degenerate 
eigenvalues the convergence is entirely by the node 
count procedure. 

Not all points, X m, which satisfy the relation xo< xm 
< xN can serve as the matching point. The important 
problem of calculating an optimum value for xm is dis
cussed in Appendix C . 

III. EIGENFUNCTION CALCULATIONS 

In this section we present the renormalized Numerov 
method for computing the eigenfunctions and also a useful 
formula for interpolating the eigenfunctions between grid 
points. 

It is assumed that an eigenvalue has already been cal
culated. With the energy parameter set equal to this 
eigenvalue, Eq. (22) is solved for the matrices Rt. 
I.b ... Rm, and Eq. (26) is solved for RN_I> aN- 2lo. ••• 

R m+t. Since the determinant of the matrix (R m - R;;'~t) 
is zero, we can obtain a nontrivial solution of Eq. (33) 
for the column vector f(xm ). If the eigenvalue is nonde
generate, the vector f(xm ) is unique, to within an un
important normalization factor. If the eigenvalue is 
g-fold degenerate then g linearly independent nontrivial 
solutions exist which can be constructed to be orthogonal 
to each other. The vectors f(xn) for n< m are constructed 
by an iterative application of the formula 

(35) 

which is easily derived using Eq. (21) and the relation 
f(xn) = Fn -I. Similarly the vectors f(xn) for n> mare 
constructed by an iterative application of the formula 

A_I 
f(xn)=Rn f(Xn-l), n=m+1, m+2,··· N (36) 

which is obtained from Eq. (25)' and the relation f(xn) 

J. Chern. Phys., Vol. 69, No. 10, 15 November 1978 



4682 B. R. Johnson: Coupled-channel Schroedinger equation 

= F n • r. The wavefunction I/I(xn) is then calculated at 
each grid point using Eq. (31). 

For some problems it is convenient to know the value 
of the wavefunction at pOints other than the evenly spaced 
grid pOints. For these cases, it would be useful to have 
a simple formula for interpolating the wavefunction at an 
arbitrary point to the same accuracy as it is known at 
the grid points. Such a formula was derived for the one
dimensional problem1 and it can easily be generalized 
to the multichannel problem. The derivation of the 
multichannel interpolation formula will not be presented 
here. It is identical to the derivation of the one-dimen
sional formula if we replace scalar quantities by their 
appropriate matrix generalizations. This multichannel 
interpolation formula is 

I/I(x) = [(a{3)-1 I + y(x)]-1 {[I3" 1 I - y(x/)]I/I(x/) 

+ [a-t I - y(X/-l)]I/I(Xl-t)]} 

where 

and 

X=X/_l + ah 

h=x/-xl_t 

13= (1 - a), OS as 1 

The truncation error for this formula is of order h4, 
which is the same as the cumulative error at a fixed 
value of x of the Numerov formula. 12 

IV. EXAMPLE CALCULATIONS AND DISCUSSION 

(37) 

(38) 

A computer program based on the methods described 
in this paper has been written13 and tested on a variety 
of problems. The results of several of these test prob
lems are presented along with a general discussion in 
this section. 

The first case is a nonisotropic three-dimensional 
harmonic oscillator. This system is separable and has 
an analytic solution in rectangular coordinates while in 
spherical coordinates it can be formulated as a coupled 
channel problem. 

In rectangular coordinates the model Hamiltonian is 

H=H-V2 + x 2 + Y 2 + w2 Z2], (39) 

where w, the angular frequency in the z-direction, is a 
variable parameter. The highly degenerate set of 
eigenvalues of this system is given by 

E=(n,.+ny +1) +w(n .. +~) (40) 

where 

n/=0,1,2, .•. , i=x,Y,z. 

In spherical coordinates the Schrodinger equation for 
this problem is 

where L is the angular momentum operator 

TABLE 1. Exact and numerically cal-
culated eigenvalues of the nonisotropic 
three-dimensional harmonic oscillator 
for w=1.5. 

Exace Numericalb 

n k En•k En•k 

0 0 1. 75 1.750000 
1 0 3.75 3.750000 
1 1 4.75 4.750000 
2 0 5.75 5.749999 
2 1 6.75 6.750000 
2 2 7.75 7.749999 
3 0 7.75 7.749999 
3 1 8.75 8.750001 
3 2 9.75 9.749999 
4 0 9.75 9.750036 

aExact eigenvalues were calculated 
using Eq. (47). 
~umerical results were calculated in 
an eight-channel approximation. 

The wavefunction can be written as an expansion in 
spherical harmonics 

rI/I(m)(r, e, cp) = L f lm) (r) YI,m(e, cp). 
1=lml 

(42) 

(43) 

Since the potential is cylindrically symmetric about the 
z-axis, the solutions can be constructed to be eigen
states of the z component of angular momentum and 
labeled with the quantum number m. In our example 
problem we will solve only for the m = ° case and for 
convenience the superscript m will be omitted from now 
on. Substitute Eq. (43) into Eq. (41), use Eq. (42), 
multiply the resulting equation by Y:,o(e, cp) and inte
grate over the solid angle n to obtain the infinite set 
of coupled differential equations 

'" L [(- d 2j dr2 + l(l + 1)/r 2 
- 2E) 5"'1 + (w2 -.1) r 2V",/]fl(r) = 0, 

1=0 

where 

This integral is readily evaluated in terms of the 
Clebsch-Gordan coefficients14 

2 (2l + 1 )1/2 2 1 V",I="3 2k+1 C(l,2,k;0,0,0)+"35,.,/. 

Since C(l, 2, k; 0, 0, 0) = ° unless l + k + 2 is even, the 
even integer subscripted terms (even parity) and the 

(44) 

(45) 

(46) 

odd integer subscripted terms (odd parity) are decoupled 
from each other. We chose to solve for the even parity 
solutions. 

The infinite sum over even terms in Eq. (44) was 
truncated to a finite sum and the resulting coupled chan
nel Schrodinger equation was solved numerically for 
various assigned values of w. Results for the case w 
= 1. 5 are given in Table I where they are compared with 
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the exact analytic results. The analytic formula that 
applies to the m = 0, even parity case is 

En.~=2(n-k)+1+(2k+t)w, 

where the quantum numbers nand k are 

n= 0,1,2,'" and O~ k~ n 

(47) 

(48) 

A graphical representation of these eigenvalues is shown 
in Fig. 1. 

Five distinct contributions to errors in the numerical 
results can be identified. Four of these, the truncation, 
tolerance, termination and roundoff errors are the same 
errors identified by Shore15 in his discussion of the one
dimensional radial Schrodinger equation. The fifth con
tribution to the error was introduced when the infinite 
set of coupled differential equations, equivalent to the 
original multidimensional Schrodinger equation, was 
truncated to a finite set. 

The results in Table I were calculated using an eight
channel approximation. It is interesting to note that the 
eigenvalues E3• 2 and E 4,o which are degenerate in the 
exact calculation are not degenerate in the approximate 
calculation. This is an example of a spurious avoided 
crossing16 in which two curves cross each other in an 
exact calculation but avoid each other in an approximate 
calculation. In order to show this more clearly we have 
computed E 3• 2(W) and E 4• 0(w) using only five coupled 
channels. The results are plotted in Fig. 2 where the 
avoided crossing behavior is clearly evident. The ex
act analytic results are also plotted for comparison. 
The relatively large error in this case is, of course, 
due to using only five channels. The E 2• 2 and E 3•0 levels 

0,0 

1.0 1.5 
w 

2.0 

FIG. 1. Energy eigenvalues of the three-dimensional harmonic 
oscillator as a function of the parameter w. These curves 
were calculated using Eq. (47), the labels are the quantum 
numbers nand k. 
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FIG. 2. Enlarged view of the E 3• 2 and E4•0 eigenvalues near the 
point of degeneracy. The solid curves are exact results, the 
dashed curves are the same eigenvalues calculated using a 
five-ehannel approximation. This is an example of a spurious 
avoided-erossing. 16 

also have avoided crossing in the multichannel approxi
mation. However, in our eight-channel calculation, the 
separation of these levels at the avoided crossing is so 
small that they cannot be distinguished within the speci
fied tolerance factor E: and so they were calculated to be 
degenerate. 

The truncation error is a function of the grid spacing 
h. It is the result of replacing the differential equa
tion, Eq. (5), with the approximate finite difference 
equation, Eq. (15). We have verified by numerical 
calculations that the truncation error is given by 

(49) 

where C4 and C6 are unknown constants. This is con
sistent with the order h4 accuracy of the Numerov 
method. 12 Equation (49) can be used to extrapolate the 
eigenvalues calculated for several different values of 
h to h = 0 by the Richardson method. l1 This is particu
larly useful if we require results with extremely small 
truncation errors. The results in Table I were calcu
lated with a grid spacing h=0.03. 

The tolerance factor E: was mentioned previously in 
Sec. II. It is the accuracy that is requested of the cal
culation. When an eigenvalue has converged to within E: 

of its limiting value, the computation is terminated. In 
our example calculation, the tolerance factor was chosen 
to give convergence to approximately six or seven sig
nificant figures. 

Roundoff error is inherent in most numerical calcula
tions not utilizing integer arithmetic. It originates with 
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the finite number of digits used to represent the num
bers on a digital computer and sets the ultimate bound 
on numerical accuracy. A discussion of this error is 
included in most texts on numerical analysis. 17 Our 
calculations were done on a CDC 7600 computer which 
represents numbers to about 14 decimal digits. 

The termination error is introduced when we force 
the wavefunction to be zero at the artificial boundary 
point xf (see the previous discussion of boundary condi
tions) instead of using the true boundary condition at 
infinity given by Eq. (3). In the present example prob
lemxf=6.0. 

Except for the roundoff error we can control the mag
nitudes of the error terms by an appropriate choice of 
parameters. Obviously, reducing any of these errors 
increases the computation time. 

We have incorporated one other approximation into 
our program. It was mentioned previously that the 
determinental relation I I - Tn I> 0 is assumed to hold. 
If this relation is not true, it means that the grid spacing 
h is far too large for at least some components of the 
wavefunction. One result will be an incorrectly com
puted node count. A solution to this problem is to de
crease h, however, this increases the computing time 
and is usually not necessary. The difficulty usually 
occurs near the origin where the diagonal elements of 
the potential matrix can become extremely large and 
positive in value. The simplest solution to this prob
lem begins by recognizing that the components of the 
wavefunction affected by the large potential elements 
are negligibly small in this region. They are so small, 
in fact, that the potentials can be truncated to some 
high value without affecting the solution in any signifi
cant way. Therefore, we designed our program to 
automatically truncate all diagonal potential elements 
so that the relation I I - Tn I > 0 always holds. 

The second test case considered is the single-center 
expansion of the hydrogen molecular ion. This is an 
important problem that has been discussed by several 
authors. 18- 20 Oar purpose is not to add significantly to 
this discussion but to simply use this problem as a con
venient test case for our numerical procedure. 

The two hydrogen nuclei A and B are clamped to the 
z-axis. Nucleus A is located at Rand B is located at 
- R. The Hamiltonian is (in atomic units) 

(50) 

where r A and rB are the distances of the electron from 
A and B. The potential can be expanded in Legendre 
polynomials 

(51) 
n 

where r< = min(r, R) and r> =max(r, R). The procedure 
for formulating this problem as an infinite set of coupled 
differential equations is the same as in the previous 
case. The result is 
00 

L[(-d 2/dr 2 +W+1)/r 2 -2E)6k I+Vk I (r)]jI(r)=O, 
1=0 • • 

(52) 

TABLE II. Single center expansion 
calculated energies of the lsO'g and 
2sO'g states of H; as a function of the 
number of expansion terms. The in
ternuclear separation is 2 bohr. Ener
gies are in atomic units. 

N lsO'g 2sO'g 

2 -1. 08368 -0.35845 
4 -1. 09997 - O. 36051 
6 -1.10184 - O. 36076 
8 -1. 10230 - O. 36082 

10 -1.10246 -0.36084 
exact25 -1.10263 -0.36086 

where 

Vkjr) = - 4 t (r~n/r~n+l) f Y:. m( e, cp) 

x P2n (eose) Y 1• m (e, cp) dn. (53) 

The integral in Eq. (53) is most conveniently evaluated 
in terms of Clebsch-Gordan coefficients. 14 Restricting 
our attention to the case m = 0, we obtain 

(
2l+1)1/ 2 I+k 

Vk.l(r) = - 4 2k+ 1 L 
n=1 I-hi 

(54) 

We also restrict our test calculations to the even parity 
solutions. 

We solved for the 1 sag and 2sag states with R=1 bohr. 
The results of these calculations are given in Table II. 
The lsag results can be compared to the results ob
tained by Ali and Meath. 20 They solved the coupled dif
ferential equations by the method of Fox. 2 The four
channel result also is in excellent agreement with the 
extrapolated four-term result of Cohen and Coulson. 18 

The cusp in the potential matrix elements at r = R 
[see Eq. (54)] adversely effects the truncation error. 
We have established numerically that the truncation er
ror for this problem is given by21 

LlEtrunc = C2 h
2 + C4 h4 + •.. (55) 

This is a much slower convergence rate than in the 
previous case [see Eq. (49)]. Because of this slow 
rate, we used the Richardson extrapolation method to 
calculate the results in Table II. The two-grid spacings 
used in this extrapolation were h = O. 04 and h = O. 02. 

Since the full inherent accuracy of the Numerov method 
is not being utilized in this problem, we could have 
saved computer time by using a simpler finite difference 
approximation than Eq. (15), i. e., one that has a cumu
lative truncation error of only O(h2

). A simple formula 
that meets this requirement is 

>Jr n+l - Un>Jr n + >Jr n-l = 0, 

where 

Un = 2I - h2Qn • 

(56) 

(57) 

These equations replace Eqs. (19) and (20) respectively. 
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The wavefunction matrix 'ltn replaces Fn in Eq. (19) and 
in all subsequent equations. Since no inversion is re
quired to evaluate Eq. (57), one of the two matrix in
versions per grid point has been eliminated. In most 
problems, the increased computation time of the Numerov 
formula is more than offset by its decreased truncation 
error. However, this is not the case for the present 
problem where we have verified that the truncation er
ror is about the same for both methods. 

The third test case is a two-channel problem de
signed to demonstrate the stability of our method 
against large potential barriers. Define the Gaussian 
function 

G(x) = 5000 exp[-200(x -1. 6)2] (58) 

and the Morse function 

M(x) = 31250 11 - exp [- B(x -1. 5)W . (59) 

where B= 1. 540375616035. Let the reduced mass for 
this problem be IJ. = (2F)j(8If 2

). The potential matrix 
elements are defined to be 

(60) 
and 

VI2 (X) = V 21 (X) = G(x) (61) 

This potential matrix can be diagonalized by a constant 
orthogona.1 matrix. The resulting two uncoupled poten
tials are the Morse potential and the unsymmetric double 
minimum potential used in Ref. (1). In the present test 
we did not do this diagonalization, but rather solved it 
as a coupled channel problem. The eigenvalues cal
culated were the same as the merged (and rearranged 
in order of increasing value) results given in Tables I 
and II in Ref. 1. 

The eigenfunctions of a system that is symmetric 
about the point x. are symmetric and anti symmetric 
about xS' Just as in the one-dimensional case, 1 we can 
take advantage of this to reduce the computation time 
by integrating over only half the range, x2:xs ' The 
antisymmetric solutions are calculated by merely letting 
x. be the initial boundary point of the integration range. 
Since the anti symmetric functions are zero at xs ' the 
initial boundary values are the same as we have been 
using, i. e., R;;1 = 0, so no changes are required in the 
program. The symmetric functions, on the other hand, 
have zero slope at x.. Let 'It_h 'It 0, and 'It 1 be the values 
of the wavefunction matrix at the grid pOints X-I =x. - h, 
Xo =XS , and xI =xs + h. From symmetry it follows that 
'It-l ='ltl and therefore from Eqs. (17) and (18) we ob
tain F_I = Fl' Substituting this into Eq. (19) and using 
Eq. (21) we obtain the initial value of the ratio matrix, 
Ro = O. 5Uo where Uo is defined by Eq. (20). 

APPENDIX A 

In this appendix several peripherally related topics 
are discussed. These include: a generalization of the 
log derivati ve method to the multichannel bound state 
problem; a derivation of the formulas for computing 
the log derivative matrix from the ratio matrix com
puted by the renormalized Numerov method; and finally, 
a comment on the calculation of the scattering matrix 
by a renormalized Numerov calculation. 

The log derivative matrix is defined to be22 

y(x) ='It'(x)'lt-1(X) , (AI) 

where 'It(x) is the solution of Eq. (5). It satisfies the 
matrix Ricatti equation 

y I (x) + Q(x) + y2(X) = O. (A2) 

A numerical method of solving this equation is discussed 
in Ref. (22). In Sec. II of this paper we defined a multi
channel node to be a zero of the function IlJi(x) I. From 
Eq. (AI), it is evident that this corresponds to a pole 
of the determinant of the log derivative matrix, I y(x) I. 
These poles can be counted by monitoring the numerical 
solution at each grid point and counting the number of 
times the relation hi y(xn ) I < - 1 is encountered. The ex
planation of this is similar to that given in Ref. (1) for 
the one-dimensional case. utilizing this technique we 
can implement the node count procedure for locating 
eigenvalues described in this paper. 

The fast converging method of locating eigenvalues 
by inward and outward integration to a common match
ing point xm can also be implemented. The multichan
nel matching conditions are given by Eqs. (9) and (10). 
From the definition of the log derivative matrix, Eq. 
(AI), it is obvious that we can rewrite Eq. (10) in the 
form 

y/(xm) lJi/(xm) , 1 =Y.(xm) 'It.(xm )· r. 

Then substituting from Eq. (9) we obtain 

[y.(xm) -y/(xm)]l/I(xm) =0. 

(A3) 

Nontrivial solutions to this equation will only exist at 
the energies for which the relation 

(A5) 

is satisfied. Energies which satisfy this matching con
dition are located by a one-dimensional search method. 
At these energies Eq. (A4) can then· be solved for lP(xm ). 

The matching condition, Eq. (A5), can also be de
rived directly from the Gordon form of the matching 
condition given by Eq. (12). Evaluating the determi
nant in Eq. (12) in terms of the submatrices, we obtain 

d(E) = 1'lt/(xm)I' l'lt~(xm) -'lt~(xm)'lt;I(xm)'ltr(xm) I =0. 
(A6) 

A condition on the location of the matching point xm is 
that it must not coincide with a node of either the in
coming or outgoing wavefunction (this is discussed fur
ther in Appendix B), i. e., IlJi /(xm ) I "* 0 and I 'It .(xm ) I "* O. 
From this and Eq. (A6) it follows that 

I 'It ~(xm) 'It;1 (xm) - 'lt~ (xm) 'It;1 (xm) I = O. (A 7) 

Using the definition of the log derivative, Eq. (AI), we 
again obtain the matching condition, Eq. (A5). 

In Ref. 1 we derived formulas for computing the log 
derivative of the wavefunction by a renormalized Nu
merov calculation. Here we give the multichannel gen
eralization. Using Eqs. (18) and (21) we obtain 

'ltn+1 = [I - Tn+t1-1 RnFn 

lJin=[I-Tnrl Fn 

'It "-I = [I - T n-l] -IR~~1 F n 

(A8) 

(A9) 

(A10) 
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The matrix version of Blatts formula8 for the deriva
tive of the wavefunction is 

(All) 

Substitute Eqs. (A8) and (A10) into this formula, then 
multiply this expression on the right by the inverse of 
Eq. (A9) to obtain 

Y(xn) = h-1(A,,+1 Rn - A,,-IR;;I)(I - Tn), (A12) 

where 

(A13) 

By a similar analysis, we can also derive a formula 
utilizing the inward integrated ratio matrices defined by 
Eq. (25). We obtain 

Y(xn) = h-1 (A".St~!1 - A".IRn ) (I - Tn). (A14) 

Although this paper is primarily devoted to the applica
tion of the renormalized Numerov method for calculating 
bound state solutions, it seems appropriate to briefly 
point out how it can also be used to calculate the S-ma
trix for a scattering problem. 

We have two methods to accomplish this. The first 
procedure is to calculate the log derivative matrix using 
Eq. (A12) and then calculate the S-matrix using the 
formulas given in Ref. (22). 

The second procedure avoids the intermediate step 
of calculating the log derivative matrix. In the asymp
totic region, X?'XN, where all but the centrifugal term 
of the potential has become negligible, the wavefunction 
is 

"'(x) = J(x) + N(x) K (A15) 
X~XN 

The notation used here is the same as in Ref. (22), K 
is the (augmented) reaction matrix and J(x) and N(x) are 
diagonal matrix functions. The diagonal elements of 
J(x) and N(x) ale the Riccati-Bessel function solutions 
of Eq. (5) obtained when only the centrifugal potential 
term is acting. For convenience define a new set of 
diagonal matrix functions (defined only at the grid points) 

(A16) 

and 

(A17) 

where Tn, defined by Eqs. (17) and (2), is evaluated using 
only the centrifugal potential. Multiplying Eq. (A15) 
by (I - Tn) we obtain 

(AlB) 

where Eqs. (18), (A16), and (A17) have been used. 
Evaluate Eq. (A18) at XN and x N+l, calculate the ratio 
matrix RN = F N+l r), then solve the resulting equation 
for K in terms of RN 

(A19) 

The S-matrix is then calculated from the K-matrix by 
the formulas given in Ref. 22. 

The closed channel elements of J(x) increase ex
ponentially while for N(x) they decrease exponentially 

with increasing x. This can be a source of numerical 
difficulty in evaluating Eq. (A19). The problem is 
easily eliminated by a procedure similar to that used 
in Ref. (22). Replace the closed channel elements of 
j(xN), j(XN+I), n(xN) and n(xN+I) by 

[j(xN+I)l;; - [j(xN+I)]i/ [j(xN)]i} (A20) 

[j(xN )]ji - 1 

[n(xN +1)] ii - [n(xN+I)] ii [n(xN)] j~ 

and 

(A21) 

(A22) 

(A23) 

It is easily verified that t~is transformation will leave 
the elements of the K -matrix which connect open channels 
to open channels unchanged. Therefore, the S-matrix is 
also unchanged. 

APPENDIX B 

In this appendix we discuss the method of counting 
nodes when more than one node is located between two 
adjacent grid points. The nature of this problem is 
most easily seen by considering an uncoupled multi
channel problem. The wavefunction matrix "'(x) and the 
ratio matrix R" are both diagonal in this case. If tw 0 

of the diagonal elements of "'(x) have nodes between Xn 

and Xn+1 the determinantal function I "'(x) I, which is the 
product or'the diagonal elements, will not change sign 
and therefore IR" I will not be negative. Thus, we have 
missed counting two nodes. Obviously any odd number 
of nodes will be counted only once and any even number 
will not be counted at all. Such a situation can also oc
cur when the channels are coupled. The problem is 
easily resolved in the uncoupled case; we simply moni
tor all the diagonal elements of the matrix R" and in
crease the count by one every time one of them is less 
than zero. We have devised an efficient method that 
reduces to this in the decoupled limit. We have not 
been able to prove that this method must work when the 
channe Is are coupled, however, it has worked on all the 
test problems that have been tried so far. In any case" 
even if this method were to fail, we are in no danger of 
computing a wrong anSwer since a wrong node count in 
one of the stages of iteration would cause an inconsis
tency that would be detected and stop the calculation. 
The determinant of Rn is computed in the same Gaussian 
elimination calculation as the inverse of R". Although 
Land U are not explicitly computed, Gaussian elimina
tion is equivalent to making a triangular decomposition23 

of R", i.e., R" =LU. Here L is a lower triangular ma
trix with ones on the diagonal. The determinant is the 
product of the diagonal elements of the upper triangular 
matrix U. Our method of counting nodes is equivalent 
to monitoring each of the diagonal elements of U and to 
increasing the node count by one each time one of them 
is negative. 

APPENDIX C 

In this appendix we discuss the method used to cal
culate the position of the matching point x",. Assume 
that suitable upper and lower energy bounds, EH and 
EL with a single eigenvalue between them, has been 
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FIG. 3. Schematic of nodes and node trajectories in the. E, x 
plane. The solid lines are the trajectories for nodes calculated 
by outward integration, the dashed lines are trajectories cal
culated by inward integration. The blocks cover the regions of 
x traversed by nodes in the energy interval E L to E H. The 
matching point xm is centered in the largest node free region. 

established by the node count procedure. Then solve 
the outward recurrence relation, Eq. (22), and locate 
all the nodes at the two energies ELand E H. These are 
represented schematically in Fig. 3 by the solid dots. 
The nodes trace continuous trajectories in the two-di
mensional (E,x) space. As E is increased the nodes 
move monotonically to the left. When the parameter E 
is just equal to the energy eigenvalue between EL and 
EH a new node is created at the right boundary. All this 
is represented schematically in Fig. 3 by the solid lines 
connecting the nodes. Similarly, we can solve the in
ward recurrence relation, Eq. (26), and locate the 
nodes24 of the inward solutions for the ene rgies ELand 
E H • These are represented by the open dots in Fig. 3. 
In the intervening energy interval, these nodes move 
monotonically to the right as the energy is increased. 
The trajectories are represented by the dashed lines. 

The only requirement on the matching pOint xm is that 
it should not be near a node of either the inward or out
ward solutions in the EL to EH energy range. The blocks 
in Fig. 3 cover those regions of x traversed by both the 
inward or outward sets of nodes. The remaining regions, 
not covered by blocks, are node free. The program 
searches for the largest of these node free regions and 
locates xm at its center. 

APPENDIX D 

In most cases, the initial value of the inverse of the 
ratio matrix is ROl = o. All the example problems pre
sented in Sec. IV follow this rule. Exceptional cases 
do occur, however. A notable example of this is the 
calculation of the bound states of the hydrogen atom. In 
this appendix we will give a general method for calcu
lating Ro and then apply it to the hydrogen atom problem 
as an example case. 

The method is quite simple. Combining Eqs. (5), 

(17) and (18) we obtain the result 

F n = ~(xn) - (h2 /12) (f"(xn), (D1) 

where the double prime means the second derivative 
with respect to x. Since the wavefunction is zero at 
Xo =0, we obtain 

(D2) 

and at Xl =h 

Fl =(f(h) _(h2 /12) (f"(h). (D3) 

These expressions are easily evaluated by computing a 
power series expansion of the wavefunction about the 
origin. Terms through the cubic should be retained in 
order to be compatible in accuracy with the Numerov 
method. Then use Eq. (21) to calculate Ro. 

From this analysis we see that the exceptional cases 
which do not obey the rule ROI =0 are those in which the 
second derivative of the wavefunction is nonzero at the 
origin. 

As an example of using this method, it will be applied 
to the hydrogen atom problem. The SchrOdinger equa
tion (in atomic units) is 

[~ + ~ -~+2EJ I/!(x) =0. 
dx x x 

Expand the wavefunction in a power series 

I/!(x) =xn(1 +bx+ cx2 + •• 0 ) 

(D4) 

(D5) 

Substitute this into Eq. (D4) and evaluate the parameters 
n, b, and c. The result is 

n=[ +1 

b= -(Z + 1tl 

and 

(D6) 

(D7) 

(D8) 

Substitute these into Eq. (D5), then evaluate Fo and Fl 
and calculate Ro. The following results are obtained: 

and 

Ro=6/h-5+(1-E)h; [=0 

Ro = -5 +(3/2)h; [=1 

(D9) 

(D10) 

(Dll) 

Thus, it is only the 1 = 0 and 1 = 1 cases that require any 
change from our rule, R 01 = O. Since R 0 is negative in 
the 1 = 1 case ,care must be taken so that we do not 
count an extra wavefunction node. 

We have verified this procedure by numerically com
puting the bound states of hydrogen. The error in the 
computed eigenvalues was greatly reduced when correct 
values of Ro were used in the 1 =0 and 1 = 1 cases com
pared to the results obtained using R iii = O. 
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