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We recast the well-known Numerov method for solving Schr€odinger’s equation into a representation

of the kinetic energy operator on a discrete lattice. With just a few lines of code in a high-level

programming environment such as MATHEMATICA, it is simple to calculate and plot accurate

eigenvalues and eigenvectors for a variety of potential problems. We illustrate the method by

calculating high-accuracy solutions for the jxj potential. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4748813]

I. INTRODUCTION

With modern high-level programming and visualization
environments such as MATHEMATICA, MATLAB, and PYTHON, it
is possible and desirable to use computational methods to
illustrate and illuminate many basic physics principles with a
minimum of programming overhead. This latter point is a
key: if the programming is too difficult and/or time consum-
ing, the focus shifts from the physics to the programming.

A case in point is the solution of boundary value problems
for the one-dimensional Schr€odinger equation. One typically
starts at one boundary with an assumed value for the energy,
then integrates to the other boundary where the boundary
conditions are tested. A new guess for the energy is gener-
ated, and the process is repeated until the desired level of ac-
curacy is obtained.1 Using the Numerov method, the
numerical integration can be done with relatively high accu-
racy even with large step sizes.1–3 Though straightforward,
this process is tedious to program when one needs to solve
for a large number of eigenstates.

An alternative approach that gives a large number of eigen-
states simultaneously is to expand the wave function in a set
of orthogonal basis states that satisfy the appropriate boundary
conditions. By truncating the basis set, the Hamiltonian can be
diagonalized with built-in matrix routines. The resulting
eigenvectors can be used to generate a superposition of the ba-
sis states to represent the spatial wave function.

A particularly attractive hybrid approach is to discretize the
wave function on a (linear) lattice. This is equivalent to
expanding in a basis set of Dirac d functions centered at the
lattice points. The eigenvectors are then simply lists of the val-
ues of the various eigenfunctions at the lattice points. This
allows straightforward visualization of the eigenfunctions, as
demonstrated recently on time-dependent problems.4

In the discretized approach, the potential energy operator
is simply a diagonal matrix of the potential energy evaluated
at each lattice point. The kinetic energy operator, being a dif-
ferential operator, is more difficult to realize. The purpose of
this paper is to show how the Numerov method can be used
to represent the kinetic energy operator on the lattice in a
straightforward manner, allowing for high-accuracy solu-
tions to be obtained with very straightforward programs
using matrix diagonalization.

II. MATRIX NUMEROV REPRESENTATION

OF THE HAMILTONIAN

The Numerov method1–3 is a specialized integration for-
mula for numerically integrating differential equations of the
form

w00ðxÞ ¼ f ðxÞwðxÞ: (1)

For the time-independent 1-D Schr€odinger equation,
f ðxÞ ¼ �2mðE� VðxÞÞ=�h2. On a lattice of points xi evenly
spaced by a distance d, the integration formula is

wiþ1 ¼
wi�1ð12� d2fi�1Þ � 2wið5d2fi þ 12Þ

d2fiþ1 � 12
þ Oðd6Þ;

(2)

where, for example, wi ¼ wðxiÞ. This can be rearranged into
the form

� �h2

2m

ðwi�1 � 2wi þ wiþ1Þ
d2

þ Vi�1wi�1 þ 10Viwi þ Viþ1wiþ1

12

¼ E
ðwi�1 þ 10wi þ wiþ1Þ

12
: (3)

Now, if we represent w as the column vector ð…wi�1;wi;
wiþ1…Þ and define matrices A ¼ ðI�1 � 2I0 þ I1Þ=d2,
B ¼ ðI�1 þ 10I0 þ I1Þ=12, V ¼ diagð…Vi�1;Vi;Viþ1…Þ,
where Ip is a matrix of 1s along the pth diagonal, and zeros
elsewhere, this becomes the matrix equation

� �h2

2m
Awþ BVw ¼ EBw: (4)

Multiplying by B�1, we get

� �h2

2m
B�1Awþ Vw ¼ Ew: (5)

The first term is the Numerov representation of the kinetic
energy operator.

On an N-point grid, the boundary conditions are imple-
mented by taking N � N submatrices of A and B. This corre-
sponds to the condition w0 ¼ wNþ1 ¼ 0; effectively we have
placed the potential of interest inside an infinite-walled box.
Alternatively, one can use periodic boundary conditions,
with A1;N ¼ AN;1 ¼ 1=d2 and B1;N ¼ BN;1 ¼ 1=12.

We choose the grid in the following manner, valid for
finding bound-state solutions to attractive potentials. It is
easy to extend the following advice to other cases. Suppose
we wish to find all the states with E < Em above the potential
minimum. The minimum local de Broglie wavelength is,
therefore, k ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffi

2mEm

p
. We have found that sufficient
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accuracy is generally obtained by taking the grid spacing d
corresponding to about one point per radian, i.e., d ¼ k=2p.
The number of grid points needed can be estimated by find-
ing the outer turning points xt such that VðxtÞ ¼ Em, and
allowing for an extra 2k in the classically forbidden region.
Thus, N ¼ 2ðxt=d þ 4pÞ rounded to the nearest integer.

III. EXAMPLE: jxj POTENTIAL

The “linear” potential VðxÞ ¼ bjxj is analytically solva-
ble5 and so is useful for comparison to the numerical
calculations. Introducing scaled variables s ¼ xðmb=�h2Þ1=3

and � ¼ Eðm=b2�h2Þ1=3
, we get

� 1

2
B�1Awþ jsjw ¼ �w: (6)

Following the guidelines for selecting the grid, we pick a
grid spacing ds ¼ 1=

ffiffiffiffiffiffiffi

2�m

p
in order to find accurate results

for states up to energy �m. The turning point is st ¼ �m, so
with the additional two de Broglie wavelengths outside the
turning point, we get N ¼ 2ð4pþ st=dsÞ. A MATHEMATICA

code for solving this problem is shown in Fig. 1. The grid
used is ds ¼ 0:158, N¼ 278, and the program runs in typi-
cally 0.1 s of CPU time.

A comparison of the exact and matrix Numerov results for
some of the energy levels is given in Table I. It is remarkable
that such high-accuracy results can be achieved with such a
simple program. An even simpler program might be obtained

by using a simple three-point approximation to the second
derivative, equivalent to setting B¼ 1. The results are also
shown in Table I and are of similar quality to the Numerov
method for small n but give clearly less accurate results for
large n. Figure 2 compares the Numerov and exact wave
functions for n¼ 50.

We have used the matrix Numerov method to solve a vari-
ety of problems. These include the harmonic oscillator, parti-
cle in a box, hydrogen atom, and the partner super potential
to the particle in a box.6 With periodic boundary conditions,
we have solved the cosine potential and the periodic square
well. We have also simulated a double-well potential to dem-
onstrate tunneling. Among these, the hydrogen atom is the
most challenging due to its singularity at x¼ 0 and the rapid
increase of the classical turning point with principal quantum
number. Codes for a few of these examples are available
online.7

IV. CONCLUSIONS

While there are other related methods, examples being
b-splines8 and the Fourier grid representation,9 that may be
superior for accurate calculation of energies and wave func-
tions by experts, we feel that the simplicity of the matrix
Numerov method introduced here makes it ideal for class-
room and course work settings as a tool for helping students
grow comfortable with the notion of the wave function and
eigenvalue problems. The method, though illustrated here
for the prominent 1-D Schr€odinger equation, is of course
useful for any Numerov-type problem. We have used it to
solve for diffusion modes of simple geometries, for example.

We have also experimented with variable-mesh grids,
which can be useful for certain problems such as the hydro-
gen atom where such grids can improve the accuracy.
However, this adds new complexities that detract from what
we feel is the main advantage of the method: attainment of
very high accuracy for minimum programming complexity
and computer time.

Fig. 1. Full MATHEMATICA code for solving the potential problem V ¼ jsj. The

energy of the mth state can be accessed by the command eval[[-m]],

and the corresponding list of wave function values at the grid points s is

evec[[-m]].

Table I. Comparison of exact and numerical results for the quantized ener-

gies (in scaled units, see text) of the jxj potential. The numerical results are

calculated on an N¼ 278 point grid with a spacing of 0.158 in scaled dis-

tance units.

n¼ 1 2 3 4 10 20 50

Exact 0.8086 1.8558 2.5781 3.2446 6.3053 10.182 18.947

Numerov 0.8099 1.8557 2.5785 3.2445 6.3049 10.181 18.936

3-pt 0.8089 1.8529 2.5728 3.2358 6.2717 10.094 18.634

Fig. 2. The lower graph shows the analytical Airy function solution to the

Schr€odinger equation for the n¼ 50 state of the jxj potential, compared to

the Numerov method eigenfunction (dots). The upper graph shows the dif-

ference between the analytical and Numerov wave functions.
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