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The rate coefficients are calculated for trap
loss due to excited state formation during
s-wave collisions of two atoms in a light
field in a cold atomic gas near conditions
for formation of a Bose-Einstein conden-
sate. Blue detuning from the allowed
atomic resonance transition causes excita-
tion of a replusive molecular potential,
whereas red detuning causes excitation
when the light is tuned near a bound vibra-
tional energy level of an attractive molecu-
lar potential. In either case, when the light
intensity is low and the detuning is large
compared to the natural linewidth of the
atomic transition, the rate coefficient for
the collisional loss rate is proportional to a
molecular Franck-Condon factor. A simple
reflection approximation formula is derived
which permits the rate coefficient to be
given analytically in either case. The
Franck-Condon factor is equal {#y(Rc)[/
D¢, where Wy(Ro) is the ground state
scattering wavefunction at the Condon point
Rc, where the quasimolecule is in resonance

with the exciting light, and¢ is the slope
difference between ground and excited
potentials aRc. The analytic reflection
approximation formula, as well as a simple
phase-amplitude formula for the intermedi-
ate range wavefunction, give excellent
agreement with the results of numerical
guantum mechanical calculations. The trap
loss rates due to binary collisions are com-
parable to or exceed those due to atomic
recoil heating for a wide range of detunings
to the blue of atomic resonance and near
the peaks of photoassociation resonances
for the case of red detuning.
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1. Introduction

Atomic collisions play a crucial role in the phenom-

time. Therefore, it is crucial to understand these ground

ena of Bose-Einstein condensation (BEC) [1-3]. Elastic state collisions. Calculating their rates requires that we
momentum-transfer collisions control the rate of evapo- be able to compute the ground state scattering wavefunc-
rative cooling leading to the high phase-space density tion. Although these collisions occur in the absence of
required for the formation of a condensate. The ground light, photoassociation spectroscopy offers a powerful
state scattering length, also a property of elastic colli- probe of the ground state wavefunction [5-8]. Light also
sions, controls the nonlinear coupling parameter in the has the prospect for being an important probe of con-
nonlinear Schrodinger equation for the condensate densate properties and for manipulating a condensate or
wavefunction [4]. Inelastic collisions among condensate even the collisions within a condensate. Therefore, it is
atoms also determine a lower bound to the loss rate of crucially important to understand how light affects the
the condensate (other processes may contribute to lossatoms in a cold, dense atomic gas near the BEC regime.
as well) and thereby help determine the condensate life- This article will be concerned with understanding the
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rates of binary collisions in a weak, off-resonant light Binary events also cause loss of atoms from a trap,
field in a cold atomic gas. Since only the case of a weak but with a rate which is very different for the cases of
radiation field is treated, the effect of light on the binary red and blue detuning. Figure 1 illustrates the two cases
collision can be described perturbatively. The case of a schematically, using the molecular potential energy
strong saturating field will be treated separately [9]. The curves for the quasimolecule comprised of the two col-
detuning is assumed to be large enough compared to thdiding atoms. Blue detuning excites the ground state
natural atomic linewidthy, and the density\ moderate atoms to a repulsive molecular state, causing the produc-
enough that binary events are sufficiently isolated that tion of excited atoms with kinetic enerdi = Ey + ZAx.
three-body collisions can be ignored, as well as collec- This heating has been discussed in the context of optical
tive effects [10]. Certainly, considering binary events is shielding [14,15,9]. The probability for this free-free
the first step in understanding the effect of light on process is a smooth function of detuning. On the other
interacting atoms. The object is to provide a simple hand, red detuning excites the ground state atoms to a
framework with which to understand these binary bound eigenstate of the attractive molecular state. This
events. They would need to be incorporated at a later only happens with high probability if the light is tuned
stage into a more comprehensive understanding of theclose to exact resonance with the eneggf the bound
dynamics and stability of an atomic gas near BEC. vibrational statev. Since the decay of the bound state
Elsewhere, we give a brief account of the possibility of mostly leads to products that are not trapped, this pro-
using photoassociation spectroscopy to probe many- cess gives rise to a trap-loss photoassociation spectrum,
body interactions in a condensate [11]. which is now well studied for the alkali dimers [16—21].

Another important reason for having a simple model The probability for this free-bound process is a sharply
for understanding these binary collisions in a light field peaked function of detuning. We have every reason to
is to understand how spectroscopic methods can be usedxpect that a gas near BEC conditions, or even a conden-
as an experimental tool for probing the ground state sate itself, will possess a detailed photoassociation spec-
scattering wavefunction. In particular, we have proposed trum for detuning on the red side afa.
that high resolution photoassociation spectroscopy When the laser intensity is sufficiently low, the
would provide an especially sensitive probe of the probability for both red and blue detuning loss processes
ground state potential and scattering properties [5]. In can be described by a Franck-Condon factor between
fact, this technique has been used to place bounds onthe ground and the excited state radial wavefunctions.
scattering lengths for Li [8], Rb [6], and Na [12, 13] For both cases, we will give here a very simple analytic
ground state collisions. Even tighter bounds should be expression for the Franck-Condon factor that is in excel-
possible with improved experiments. In particular, we lent agreement with fully quantal calculations. We will
will show below how the spectroscopy of very cold show that the Franck-Condon factor is proportional to
gases might be use to measure properties of the ground ¥,(Rc, E)|? the square of the ground state wavefunction
state wavefunction. at the Condon poinR;, where the quasimolecule is in

The primary effect of light on cold trapped atoms is exact resonance with the light. R the difference
to cause loss processes by giving the atoms enoughbetween excited and ground potentials exactly matches
energy to escape the trap. For example, a single atom7Zw. Our expression for the binary collision rate exhibits
scatters light of frequency detunedA, = w —wa from the proper quantum threshold law behavioEas 0. It
the atomic resonance frequeney at the rate, predicts that the binary collisional loss rate per atom,
Yoinary, @ISO Vvaries asi¥ and at typical BEC densities
generally is comparable to or exceeds the atomic scatter-
ing rate, Eqg. (1), for a wide range of blue detuning and
greatly exceeds the atomic scatering rate whers
tuned near a photoassociation resonance.

We will first describe the model and the basic proper-
where, = V2xl/c da is the Rabi frequency at laser ties of the ground state wavefunction. Then we will
intensity | for the atomic transition with transition discuss the binary collision rates for the case of blue
dipoled,, and we assumila| >> 2, and|Aa| >> ya; Aa detuning and the reflection approximation for the free-
is defined so as to be positive for blue detuning and free Franck-Condon factors. Then we will describe the
negative for red. Since each scattering event gives amodifications needed to describe the case of red
recoil momentum kick ofik, = Zw/c to the atom, and  detuning and free-bound Franck-Condon factors.
since the thermal momentum of the atom is comparable Finally, we will consider some of the implications for a
to, or smaller than/k,, this atomic light scattering cold atomic gas near BEC.
heats the atoms, causing their loss from the trap.

B (1)

Yatomic = YA (A_A
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Fig. 1. Schematic diagram of quasimolecular potential energy
curves for two atoms with an allowef - P transition, showing
free-bound and free-free absorption for respective red and blue detun-
ing from the atomic resonance frequensy.

2.  Model

The binary collision rates for the two cases described
in Fig. 1 will be expressed in terms of Franck-Condon
factors between the ground and excited state wavefunc-
tions. However, it is very desirable to formulate the
problem using the field-dressed molecular picture of a
collision in a light field. This procedure is well-
documented elsewhere [22—-27], even for cold collisions
[28-30,5,14], and need not be described in detail here.
A two-state model with a single ground state and a
single molecular excited state will be assumed. In the
weak-field limit it is straightforward to generalize to
multichannel ground and excited states for real alkali
systems with hyperfine structure. In fact, we have now
developed computer codes that let us include both
ground and excited state molecular hyperfine structure
for alkali species for optical transitions in the weak field
limit [12, 13]. The ground state potential ¥4(R) and

the excited state potentialN&(R) — 7 Aa, where both,
andV, - 0 asR - oo. The ground and excited states are
coupled optically by the interaction matrix element
70(R), where the molecular Rabi frequency is

Q(R) = V27 1/c d(R) = b(R)2x , @)

where d(R) is the molecular transition dipole, and
0=DbR) = 2/\V/3 relates the molecular and atomic
Rabi frequencies. The particular valuetnflepends on
the molecular states involved. The ground and excited
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dressed potentials cross at the Condon p&atthe
point of quasimolecular resonance, where in the un-
dressed picture of Fig. 1, the difference of upper and
lower potential curves matches the photon enefgy

frwp + Vo(Re) —Vy(Re) = 7w 3)

Ve(Re) = Vy(Re) = 7. @)

In this paper we will carry out purely model illustra-
tive calculations. For this purpose it is sufficient to use
analytic Lennard-Jones potentials for the ground and
excited states,

7))
R L

=35

i =g oreandn = 6 for the ground state van der Waals
potential anch = 3 for the excited state resonant dipole
potential. The long range variation &/R° and Cs/R®
respectively. We use a reduced mass characteristic of
sodium. It is difficult to show on one graph the poten-
tials over the very large range of energy and distance
involved in cold collisions. Figure 2 shows orogarith-

mic scale the magnitud&/(R)|/ks (where kg is the
Boltzmann constant) of the long range potentials for
the ground and excited states of the,Maolecule, for
which we takeCs = 1500 atomic units a3, where

e = electron charge ara = Bohr radius = 0. 0529 nm)
and|C;| = 10 atomic units €%a3). Figure 3 shows on a
linear scale the ground and attractive and repulsive
excited state potentials, as well as illustrative wavefunc-
tions for each. Since the excited potential is orders of
magnitude stronger than the ground state at long range,
it is an excellent approximation to neglect the ground
state contribution in calculating the Condon point:

(®)

IS
-3

C
A

1/3

|4l (6)

DRc:‘

Figure 2 also indicates the detunings associated with
eachR, taken as a Condon point. Note that the ground
state interaction strength is not negligible at intermediate
R, but is stronger than 1K wheneverR is less than
about 300a,.

3. Ground State Wavefunction
3.1 Long Range Form
We need the ground state wavefunction to use in the

reflection formula for the Franck-Condon factors
we derive below. When the collision ener@yis low
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where theV2u/n7%%. factor ensures energy normal-
v dor Wasl: G ization, [(W(E)| W(E"))* = 8(E —E’). The asymptotic

’ F kinetic energy isE = %#%k2/2u, whereu = ma/2 is the
reduced mass, the deBroglie wavelength.iss 27/k..,
and the velocityv. = 7 k/u. It is sometimes more
convenient to write the energy normalization factor as

-9
10 o

Detuning

VRV,
10 MHz

100 MHz

1 GHz
10 GHz 2 12 2

100 GHz ( Wﬁl;k) = (8)

- 12"
1 THz (hv*)

(Kelvin} 10 P

e

[P AR AR

Resonant dipole: C /R®

Ly

10° L i i
10 111(2) 1000 If E is small enough, the asymptotic phagg= nm—
° kA, where A is the scattering length and is the
number of bound states supported by the ground state
Fig. 2. Magnitude of long range ground state van der Waals and potential; thens term can be ignored, since it only
excited state_ resona_mt dipole interaction potentials, shown usi_ng log introduces an inessential phase factor. The scattering
scgles. The mteracnoq strgngths were taken t€he _15_00 atomic Iength is a property of the whole potential and for real
units andC; = 10 atomic units respectively, characteristic of Na atom . 7 S
interactions. The scale on the right hand side of the figure gives the 2lOMS is very sensitive to small uncertainties in the short
detuningA, corresponding to the Condon points associated with the range, chemical bonding, rangeR®fHowever, the scat-
resonant dipole curve. tering length provides a good parameter to characterize
the effect on the long range wavefunction of the com-
plete potential.

Figure 4a illustrates typical ground state wavefunc-
tions (in their real form without the trivial complex
phase factor &) with positive, zero, and negative scat-
tering lengths. These were calculated by making slight
changes in the model potential parameters. The inner
region wavefunction, say fdR < 30 ay, is characterized
by rapid oscillations as the local kinetic energy
increases due to the acceleration by the attractive ground
state potential. The intermediate range wavefunction,
say for 80a; < R < A./4, is nearly linear inR and
extrapolates to an intercept neRE As

V(R)

(cm™)

12 k(R — Ay
i -9

A much more accurate representation of the ground

Fig. 3. Long range ground and attractive and repulsive potentials on state wavefunction in the intermediate range is found by
a linear scale forthg same long range p_arameters as for Fig. 2. Typical Correcting for the variation in phase and amplitude
free and bound excne_d state wavefunctpn; for.a Na reduced mass ared to th d stat tential. The detall
also shown, for an exit channel with 5 chrkinetic energy and for a ue . 0 e nc_mzero ground staie po _en 1al. € detalls
bound state with a binding energy of 4.87 ¢nifhe 2uK ground state of this derivation, based on an approximate treatment of
wavefunction is nearly linear between &9and 200a. the rigorous Milne equation for the phase-amplitude

form of the wavefunction, are given in Appendix A. The

result is that a more correct form of the long range
enough, only collisions with zero relative angular mo- wavefunction is found from Egs. (60), (69), and (72)
mentum of nuclear motion contribute to scattering cross
sections. The-wave ground state wavefunction takes on VR, E) = eing< 2u >1/2

ViR, B = e (2

T

40 80 120 160 200
R ()

the following well-known behavior aR - : v
[(E)) ~ en( 2] x a(R) sinf.p(R)), (10)
mh where
sink-R + ng)
Vk. s 7) aR)=1 —(%)4 (11)
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Fig. 4. (a) Comparison of characteristic ground state near-threshold
wavefunctions at 1.4.K collision energy. The wavefunctions were

calculated using a Na reduced mass and three different hypothetical

model potentials which yield scattering lengths= — 962y, 0, &, and

+ 101ay. The intermediate range wavefunction projects to a node near
R = As. Of course, the scattering length for any real atomic species is
fixed by the actual interaction potential and can not be varied (except
possibly by introducing external fields). (b) Comparison of the scatter-
ing wavefunction for the potential for whiok, = + 101a, with the last
bound state wavefunction (bound state binding energy is 2.6 mK),
when both are given a common WKB normalization near the distance
of the deepest part of the ground state potential.

Re

»(R) = R —As—g <ﬁ)4 R. (12)

Equation (10) only applies in the regiéh>> Rs so that
the correction termRs/R)* << 1, where

TR A
Re = <10ﬁ’2>

is a constant independent of energy with dimensionality
of distance. It has a value of 4% for Na and 77a, for

(13)

and 120g, for a model Na potential witlhs = + 84.3a,.
Such a magnitude of is near the actual value for
doubly spin-polarized Na [31,32,12]. The actual wave-
function node at 87.5; is shifted 3.2a, further out than
A, as accurately predicted by Egs. (10) and (74). A
much larger shift of 1&, in node position is predicted
for ¥Rb.

0.2

¥(R,E)
(CmJ),uz
-0.2 Points: Numerical ‘¥ -
5 Lines: phase-amplitude formula
Lo I N PR N B B
50 60 70 80 90 100 110 120
R(ao)
Fig. 5. (a) Comparison of the exact calculated ground state wave-

function (points) with the predictions of the phase amplitude approx-
imation, Eq. (10), using a Na reduced mass and a potential for which
As=84.3a,. The actual node position Rt= 87. 5ay is shifted to larger

R. The node position is independent of collision energy, as predicted
by Eq. (12).

3.2 Short Range Form

Before leaving this discussion of the ground state
wavefunction, it is useful to comment on the nature of
the short range wavefunction Bs— 0. When the colli-
sion energyE decreases towards zero, there will always
be a characteristic quantum threshold connection be-
tween the asymptotic and short range wavefunction. It is
possible to define a characteristic distaRsavhere the
WKB connection between the asymptotic and short
range wavefunctions strongly breaks down for collision
energiesE < Eqg [33, 34]. A necessary condition for
onset of the threshold law behavior BS<< Eq,. The
values ofR, andEg are determined by requiring that the
maximum in the function d(R, E)/dR satisfy the
following condition:

dA(Ry, Eg) _ 1
drR T2

5 (14)

where the local deBroglie wavelengtiiR, E) is defined

Rb. Figure 5 compares the exact wavefunction and the by Eq. (63) in the Appendix A. For alf < E, there is

result of Eq. (10) in the near linear region betweerag0
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and the WKB approximation fails. Using Egs. (17) and function near threshold and the wavefuncton for the last

(18) of [34], bound state, both normalized at short range to the same
WKB form. Scattering wavefunctions near threshold, as
{0 B well as the last bound state wavefunction, when given
Ro = 2Y2(7a)® Re =1 04%Rs (15) this common normalization, are almost indistinguish-

able forR < R,. The physical reason for this is that the
local amplitude and phase are determined by the ground
wherea =+ <_> 7 state potential in a region where it is very deep com-
27\ 3 2 pared to the initial collision energy or bound state bind-
Rs = 0.96R,, independent of potential parameters (since ing energy.
both have identical scalings wit8s and w), and the Both the inner range and outer range approximate
defined parameteiRs andRg turn out to be fortuitously ~ wavefunctions, Eqgs. (16) and (10), are proportional to
very close in magnitude. Since each of these only de- V.., in accordance with the threshold law requirement
fines a qualitative range of distance associated with a that the ground state wavefunction Rer<< 1k.. every-
change in the wavefunction, they can be used inter- where vanishes as’k.. This ensures that the probabil-
changably. The WKB breakdown region is actually very ity for inelastic processes due to the ground state en-
broad (An example for a He mass is in Fig. 3 of trance channel vanish &s asg - 0. This is the basic
Ref. [33]), and becomes broader as energy is lowered threshold law for inelastic collision rates which must be
belowEq = 19 mK for Na orEq = 1. 5 mK for Rb [34]. satisfied for light-induced inelastic events for either red
Therefore, significant departure from the WKB form or blue detuning.
begins at distances well to the rightRf, and Eqgs. (10)
and (11) show that the amplitude of the intermediate
range wavefunction remains much closer to its asymp- 4.  Collisions for Blue Detuning
totic amplitude 1/Vk. than to the local WKB ampli-
tude < 1/VK(R, E). Thus, the amplitude of the ground The case of cold collisions in a blue detuned light field
state wavefunction does not appreciably exhibit the ac- has been extensively studied recently, both experimen-
celeration due to the ground state potential unitisson tally and theoretically [14,15,9,35-41]. Figure 4a shows
the order of or less thaRy = Rs. This is one of the  the ground and excited state potentials for the case of a
reasons why a semiclassical analysis fails in the long very large detuning of 5 cth or 300 GHz, from atomic
range region agE - 0. resonance. If the light intensity is strong enough (this
The form of the wavefunction in Eq. (60) is com- will be defined more precisely below), the ground state
pletely rigorous at all distances and energies, providing atoms approaching one another encounter an effective
that the Milne equation described in Appendix A is repulsive interaction near the Condon pdiatand are
solved exactly. References [33, 34] show that the ground repelled. This gives rise to the phenomenon of optical
state wavefunction for the inner regidh<< Ry is well shielding [15,9,35—-41], by which the light prevents the
approximated by the form atoms from approaching closer thRp, thereby reduc-
ing the rate of ground state processes which require the
atoms to be closer together thBa The light also mod-
ifies the ground state elastic scattering rate and scatter-
ing length, and results in the creation of hot excited state
X sin(BYB(R, E)) (16) atoms which share the kinetic energy releaséd,
[14,15,9]. Since we are considering the weak field limit
here, the shielding effect is small and we will concen-
= (Ak.)Y? Wike* (R, E = 0), (17) trate on the latter energy release process. The event rate
coefficient for this process is

1 (14)¢ <7>1I2=7.0419. Thus, we find that

ViR B) = ey e 2 ) aeee, )

whereA is an energy-independent constant having the  K¢(4,) = <%’ P<(E, AA)> = <7T—/E Pe(E, AA)>, (18)
g

dimension of length and"*®(R, E) = 1/Vk, (R, E) is ks

the WKB amplitude. Equation (16) shows that

the overall shape of the inner range wavefunction, where the brackets imply an average over the distribu-
P§*®* (R<< Ry), is independent of energy, whereas the tion of ground state velocities,, and

overall amplitude decreases ask()"?> asE - 0. This

is illustrated in Fig. 4b, which shows a scattering wave- P(E, An) = |SHE, An)f (19)
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is the probability for the event by which two ground EandE + 7A, respectively. The asymptotic excited state

state atoms collide in a light field and produce one wavefunction is:
excited and one ground state atom, both of which have
enough kinetic energy to escape any weak trapping

potential.

When the radiative coupling is small, the radiative
distorted wave approximation [24,26,27], can be used

for the S-matrix element:

SAE, An) = — 27 (WH(E + £4,) Ve R)OFH(E)),
(20)

whereVe(R) = 7Z£2(R) from Eq. (2). The kinetic energy

in the asymptotic ground and excited state channels areR. then this term can be removed from the integrand in

2u
%Ko

)1/2 Sin(ke<R + 7¢) .
(21)

HE, 4D ~ e

The ground and excited state wavefunctions are also
illustrated in Fig. 6a. The excited state wavefunction
oscillates much more rapidly than the ground state one
because of the much greater kinetic energy in the exit

channel.
By assuming that the radiative coupling(R) is
either independent dRor slowly varying withR near

04

[V (R)-(h2m)A 4
02
V. (R) 2
] V(R) (em™)
-2
-4
Re -(W/2m)A ,——
! ! """‘l"‘l"’—-6
20 40 60 80 100 120 140 160
R (ao)
(b) "'l'"|"'|"'|"'|"'|"'76
04 |- -(h/27‘c)AA—'_,>j
" N 4
1 2
V,R)
Y(R) V(R) (cm™)
41 -2
4 -4
V. (R)-(/2m)A
P B N 8
20 40 60 80 100 120 140 160
R ()
Fig. 6. (a) Ground and repulsive excited state field-dressed potentials for a blue detinivfy

5 cnt! = 300 GHz and laser intensity= 0. The crossing aR = Rc becomes an avoided crossing
whenl # 0. Ground and excited state wavefunctions are also shown. (b) Similar figure for the case
of a red detuningd, of —4.87 cm?, in resonance with the = 84 level of the attractive excited

potential.
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Eqg. (20), giving the radiative distorted wave result that

P(E, Aa) = 4m°VE (VL(E, M) PENI (22
= ATPVEFE, Ay), (23)

whereVe = VogRe) and
FeE, 4n) = [(WL(E, 4n)| P4(E))[ (24)

is a free-free Franck-Condon factor. Although direct
evaluation ofFey; by numerical quadrature does not
converge, since both wavefunctions oscillate with finite
amplitude toR = «, there are several methods available
for evaluatingFeq numerically [27], as well as approxi-

mate formulas based on the local nature of the integrand

near the Condon poif.. Here we use a two-state close
coupled scattering calculation of the collision in a weak
radiation field with anR-independent Rabi frequency,
and extractSe) from the asymptotic field-dressed
wavefunction [24-27]. Then the Franck-Condon factor,

2
F%C(Ea AA) - h‘U’ch, (26)
where
d
D¢ = d—R(Ve(R) —Vy(R)) R=Re (27)
3C 3
= fo = R [l (28)

is the difference in potential slopes evaluatedRatnd

ue = 1(Re) = V2(E —Vy(Re)/u is the local velocity at

Rc. The second equation follows from neglectivigin

comparison toV.. The corresponding semiclassical

treatment in the field-dressed picture of Fig. 6a is given

by the Landau-Zener (LZ) approximation [14,15,9] for
~

ZE, A) =2 e’ (1—er)=2A. (29)

independent of the laser intensity chosen for the calcula- The latter approximation applies when the dimension-

tion, is calculated from:

SE, 44)

Feg(Ea AA) = 477_2 V(Z: )

(25)

less LZ adiabaticity parameter

472\/2

AC = hU(;DC

(30)

where S4E, A,) is calculated using a standard close is small compared to unity. This condition also ensures
coupling scattering code. This method can be general-the low intensity regime of linear variation & with
ized to a multichannel version when there are more than light intenstiy. Using Eq. (25) to obtaifs(E) from
two channels [27], and thus could be used for atoms Eq. (29) gives exactly the same expression as in
with hyperfine structure [12, 13]. Eqg. (26). Note that both Egs. (26) and (30) have left out

Figure 7 showsF., calculated for collision energy the phase factor si(By(Rc) —B«(Rc)). Actually, the
E/ks = 2 K using a model ground state potential with phase factor has been replaced by its average value, 1/2.
the reduced mass for Na collisions and a calculated Note thatPs* given by Eq. (29), even with the phase
scattering length of +84.&. The detuning range corre- factor, does not satisfy the threshold law requirement to
sponding taR = 20, to 200a, is 8 THz to 8 GHz. The  vary ask. asE - 0. In fact,FSY(E) from Eq. (26) is in
Franck-Condon pattern shows an oscillatory pattern very poor agreement with the guantum mechanical
versusRc or detuning. fe(E) in Fig. 7 and is not shown in the figure.

The usual stationary phase derivation of Eq. (26) can
be adapted to give the correct threshold lanEas 0.
The details are given in Appendix B. The result is a key
result of this paper, a simple reflection formula:

5. Reflection Approximation

We will now turn our attention to developing approx-

imations that will give considerable physical insight into
the nature of light scattering at very low collision energy.
Let us first look at semiclassical approximations. We
will assume a single Condon poiRt. Thus, our analy-
sis does not apply to states with significant contributions
from two Condon points, such as the low vibrational
levels of the @ state of Na [12, 13]. A semiclassical
approximation for the free-free Franck-Condon factor
F&(E) is given by Eq. (46) of the reference [42] (we
remove the uninteresting2 factor):

494

FE(E, 42) = p- [W3(Re, B (31)

The Franck-Condon factor is directly proportional to the
square of the ground state wavefunction. It only depends
on the excited state through the slope tebs This
expression explicitly satisfies the threshold law, since at
all distanceR << A.., | %,[* is proportional tdk. whenE

is sufficiently smaller tharkeq [33, 34]. WhenR > Rg,

the quantum wavefunction is well-approximated by
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Fig. 7. Comparison of exact and approximate evaluations of the Franck-Condon factors
for different Condon point&:. The correspondance of detuningRe s indicated on the

top horizontal axis. The free-free Franck-Condon factors have dimensionality of
(energy)?, where here energy is expressed irtomits. Since the same magnitude of the

C; coefficient was use for the repulsive and attractive curves in our model calculations, the
exact free-bound Franck-Condon factors are seen to lie on nearly the same curve as the
free-free ones, when the former are divideddty;/ov to normalize them per unit energy.

This is as predicted by Egs. (31) and (41). The reflection approximation formula of Eq.
(31), | Wy(Ro) YD, is in excellent agreement with the exact calculations over the whole
range shown. The intermediate range phase-amplitude formula, Eq. (32), is good agree-
ment forR > 70 a,. (a) logaithmic scale (b) linear scale showing region near outer nodes.
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Egs. (10)-(12), and the intermediate range phase-the whole range of temperatures encountered for

amplitude approximation t&& is: trapped laser cooled atoms, including te» O limit.
FEAE. Ax) = - adsir(k. po) (32) i -
= hu..Dc ' 6. Collisions for Red Detuning
whereac = a(Rc) andpc = p(Rg). The basic difference We can carry out a very similar treatment for the case

between this formula and the Landau-Zener one, of the free-bound Franck-Condon factor for red detun-
Eq. (26), other than the phase factor, is the presence ofing. Figure 6b illustrates the dressed potentials and
the asymptotic ground state velocity in the denominator wavefunctions for a red detuning case. The basic differ-
instead of the local velocityc. If Rc is in the range ence from blue detuning is that the attractive potential
Ry << Rc << A../2 so that the sin function is linear in its  supports discrete bound states. When the laser fre-
argument, then guencyw is tuned near the position of a particular bound
level with vibrational quantum numbeyr, the level can
be excited and decay to some prodpgtwhich is no
longer trapped. The decay process is primarily sponta-
neous emission leading to formation of molecular spe-
The equivalent approximation foP. is found from cies or hot atoms [28, 42]. In the field dressed picture of
Eq. (23), Fig. 6b, the bound state is a scattering resonance embed-
ded in the continuum very close to threshold. The rate

2uaépd
e e (33)

FSS(EY AA) =

_167VE L, coefficient for red detuning is also given by Eq. (18), but
PdE, 4n) = hu.Dc acke. pe. (34) the S-matrix element is given by a modified resonant
scattering form described by Napolitano et al. [5]:
Figure 7 also shows the predictions of ff2andF™ |S«(E, v, 4a)?
formulas compared to the exact results fquk colli-
sions. The full reflection formula is an excellent approx- _ _ %rE v, An) (35)
imation over a wide range of Condon points, and even E—-A)\2 ’
remains very good into about 2§ where the ground (T) + (w/2))

state has accelerated the atoms to a velocity much higher

than their initial one. Thé&™ approximation formulais  whereA, is the detuning relative to the positi& of the

also excellent at intermediate range, uRibegins to bound state. The total decay rate of the excited bound
approactRs = R,. Figure 8 compares the exact aaf statevis y, = v, + ¥s(E, v, 4a) + 7o, Wherewy, is the rate
results for other collision energies up to 2 mK. We see by which the bound state resonance decays to the de-
that the reflection approximation is very good for almost tected productys(E, v, 4,) is the stimulated emission

A,=10GHz 3GHz 1 GHz 500 MHz
10° At ' L
3 T T — 1 1
10° — —3
i 200 pK 3
10* 3 k 3
1000 L ]
F 2 mK E
F o=l<y ly>P | m E
eg g e 5 ]
a2 100 F E
(em™) E ]
10 2 uK 4
1L Points: numerical ]
3 Lines: Phase-amplitude formula 3
0.1 L L . ! ! ]
100 200 300 400 500 600

R (a))

Fig. 8. Comparison of the exact free-free Franck Condon factors and the predictions of
the phase-amplitude formula, Eq. (32), for higher collision energifs,= 2 nK, 200 K,

and 2000uwK = 2 uK. The breakdown of the reflection approximation is seen at the larger
R for 2000 p.K.
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rate back to the ground state continuum, agpds the

decay rate due to any other undetected processes (such

as molecular predissociation). The critical element for
our purposes is thes(E, v, A4n) factor, which describes
how the cold colliding atoms couple to the excited bound
state. For low light intensity, this factor is given by the
Fermi golden rule expression [5]:

2 .
B(E, v, 4) = (T) Vel R THENP  (36)
where ¥(v) is the unit-normalized bound state wave-
function of the excited bound state. Using the same
factorization approximation as for Eq. (23), this can be
written in terms of a bound-free Franck-Condon factor,

Y(E, v, Ax) =

2TV (1) PN (37)
= 2T \2 Fo(E. v, A). (38)
7 C eg A

The assumption is thaV3 is evaluated at a single
Condon point; if there is more than one Condon point,
the interference between the different amplitudes from

each Condon point would need to be taken into account.

The derivation of the reflection approximation
formula for the bound-free Franck-Condon fadteyE,
v, Aa) follows immediately from the same treatment in
Appendix B that we used in deriving the free-free
Franck-Condon factor. The essential difference is that
the unit-normalized bound state wavefunction can also
be written in energy-normalized phase-amplitude form
just like Eq. (16), as is commonly done in generalized
multichannel quantum defect theory [44]. It is only
necessary to introduce the vibrational spacing

%, - hv,,

o (39)

wherev, is the vibrational frequency, the number of
complete vibrational cycles per unit time. Then the unit
normalized bound state wavefunction has the form [44]

VR, v) = (%“)”2 <W> " 4R, v) SINBR, v)).

(40)

wherea and 8 can be determined quantum mechani-
cally from Egs. (61) and (62), or alternatively, from the
WKB form, Eq. (64). The derivation in Appendix A,
adapted for a right hand turning point, carries through to
give
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FedE, v, AA)—aE 1

I‘I’*(Rc E), (41)
where Y4(R:, E) can be calculated exactly or taken
from Eg. (10)) above. The vibrational spacing function
can be evaluated approximately from the discrete level
spacing,

Jv

E.1—E-
lTl' (42)

or more rigorously from the wavefunction at some short
range pointRy:

oE, _ wh? 2 4
v Z <ko|3pe(Ro, U)|

‘dlpe(RO v)

). @)

where k, = ki(Ry). This equation immediately follows
from Eg. (40) upon using the WKB forms in Egs.
(77)—(78). The result depends only weakly on the choice
of Ry as long as it is in the classical region of the
potential well. We use Eg. (43) in the numerical results
described below.

Although the free-free and free-bound Franck-
Condon factors have different dimensionality, they may
be compared by evaluating the free-bound Franck-
Condon factor per unit energy, Beg(v, Aa)(0E, /dv) ™™
Figure 7 also shows the results of evaluating this func-
tion for a number of discrete bound levels using an
attractive potential that has the same magnitude of the
C; long range potential coefficient as for the repulsive
state (see Fig. 3). Each bound level defines a distinct
Condon point nearly equal to the outer classical turning
point. The free-bound and free-free Franck-Condon
factors fall on almost exactly the same curve in Fig. 7,
even wherR: is as small as 28,. This is expected from
the fact that the free-free and free-bound transitions in
the model calculation have the same ground state wave-
function andD at the same Condon points. The results
in Fig. 7 show that the reflection approximation is just as
good for bound states as for free states.

Now we can easily derive from Egs. (38) and (41) a
simple expression for the stimulated decay rate of the
excited bound state to the ground continuyifE, Aa):

2T VC hV

¥(E, Aa) == | %(Re, E)? (44)
2 V2 4 .
= 7” D—Z hw, - & siff(k.po) (45)
16722
- { th-DcC a%kip%}vb (46)
= Py(E)w. 47)
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The probabilityP«(E) in Eq. (47), defined by the ex-  This expression is independent of collision temperature,
pression in braces in Eq. (46),identicalin form to the as is should be. Using Egs. (2), (6) and (28) and the fact
probability in Eq. (34) for a free-free transition. The that we can write [43, 42]

expression in Eq. (47) thus has a pleasing physical inter-
pretation: the total rate of decay out of the bound state
is the probability of decay during one vibration cycle
(corresponding to a “complete” collision with incoming
and outgoing parts) times the frequency of vibration the rate coefficient can be algebraically transformed to
(number of cycles per second). The overall probability the form

for the photoassociation transition, given by the reso-

Ar \3
Cs = tyim(32) (50)

nance scattering expression in Eq. (35), explicitly KB A,) :2béf3 (&)z 1 ¢ (51)
exhibits the threshold law form due to thefactor in the e VAT 3y M Al N ©
numerator.

The form in Eqg. (44), proportional to the square of the In Eq. (50)f; is a fraction of order unity depending on
ground state wavefunction, will also give the threshold the particular molecular states involved (In Hund’s case
law form forp- andd-waves, etc. It also explicitly shows (@) it is 1/2 for a>, state and 1/4 for &8l state; in general
why the photoassociation spectra map out the nodal it will be a function ofR that can be worked out for any
structure of the ground state wavefunction in the inten- particular state). The following definitions are used in
sity pattern versus vibrational guantum number [28, 17]: Eqg. (51):
as detuning Ax changes from level to level, the
Franck-Condon factor tracks the ground state wavefunc- be = b(Rg) (52)
tion at the changind.. This effect is expected to be
much cleaner in very low temperature spectra, where
only s-waves contribute, than in most of the existing Ny, = (53)
higher temperature experiments, whefgp-, d-waves,
etc., all may contribute. The- and d-waves do not
generally have the same nodal structure in the interme- ¢ = (1 <RB>4>2 (1 A 2 (RB>4>2

C - - .

diate range as the-wave does. (54)

7. Coliision Rates Near BEC Recall thatb(R) is defined by Eqg. (2). The l#f:/37

In order to estimate the effect of binary collisions in factor in Eq. (51) is a dimensionless molecular physics
a cold dense atomic gas, it is necessary to compare thefactor depending on the specific transitions involved,
rate for the binary process with the atomic scattering and it has a maximum value of
rate yaomic I EQ. (1). The binary event rate is

NI

4 _
Yoinary = Ke(AA)N , (48) QT -

whereK_ is given by Eq. (18). For the purpose of esti- The densityN, corresponds to one atom per culic
mating the relative importance of atomic and binary The density near BEC conditions in a cold atomic gas is
light scattering events in causing loss of trapped atoms typically larger thanN,. The factorfc has a nominal
due to heating, it is necessary to compagmi. and order of magnitude unity and reflects the phase of the
2vbinary SINCE two atoms are lost per binary event. For ground state wavefunction. It will have a node néaif
the large detuning and moderate density conditions we A is positive and in the intermediate range.
consider, the influence of any collective effects on light ~ Using Eq. (51), we find
scattering is not likely to alter significantly these basic
magnitudes. We will base our estimates on the interme- biue
diate range formulas foR > Rs, Egs. (34) and (46), 2Yonay . L N fe. (55)
since these apply to a wide range of detuning from near Yatomic 7 Ny
resonance to beyond 100 GHz.

Using Egs. (34) in (18), the rate coefficient for trap
loss events for blue detuning in the intermediate range is

This fraction is nearly independent of the blue detuning
Ap over awide range, sinde= 1 (except near the node).
SinceN, = 5x 10" cm™3for Na and 410" cm3for Rb,
3279\/2 we see that the order of magnitude of the light-induced
2K2"(Ap) = TCC agpé. (49) binary collision loss rate is comparable to or larger than
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the atomic light scattering rate when the density is in the minimum rate coefficient from summimg over all such
range of 16 to 10" cm™2. contributions iss 2K®/(4N,). Thus, we estimate

It is also possible to get a simple expression for the
rate coefficient for trap loss due to a bound state photo- 1 » . »
association resonance by using Egs. (47) and (35) in N, (2Ke) < (2KEY) < (4N,)(2KE)). (59)
Eq. (18). The thermal average can be greatly simplified
at very lowT whenkgT is very small compared to the
linewidth 1, of the bound state photoassociation reso- ~ From Eq. (59) and (55), and the fact thdf >> 1
nancev. Since the numerator of the resonance scatter- Wheneveria >> y,, we see that iy will be a sharply
ing S-matrix element, Eq. (35), satisfies the threshold Peaked function that is much smaller thagbiZ. (for
law form, the energy-dependence disappears in the the sameA,|) whenw is tuned between resonances, but
numerator of the resonance scatttering rate coefficient Which is much larger thany2ia, when thew is tuned
expression. Then we are left only with the energy depen- {0 & photoassociation resonance. Therefore, by detuning
dence in theE —A, term in the denominator of Eq. (35). 0 the red side of atomic resonance, the effect of binary
But sinceksT is small compared teither of the terms ~ collisions can be made to be either very large or very
in the denominator, thE dependence is negligible and  Small compared t@awmic The cold atomic gas will have
can be dropped. We also assume= y,, that is, each @ prominent photoassomatmn spectrum, gnd the rate for
decay results in a loss event, since the stimulated decayphotodestrucuon at the peak positions will measure the
rate is assumed to be smajk&< v,). Thus, the thermal ~ ground state pair correlation function Py(Rc)|? at the

average rate coefficient due to resonand&®comes, in Condon points for the transitions. There is a discrete set
the T - O limit, of Condon point&:(v), corresponding to the outer turn-

ing points for the vibrational levels of the upper molec-

o p— Yo ular state. There are several well-known alkali dimer

2Ke(v) = <§ (v, AA)> (A + (7uI2) (56) transitions that have already been studied [7] in much
' ' hotter traps than the </iK traps that are now available.

o vy Yo The intriguing question remains whether 3-body or col-
= 2Ke @Y+ (2R (57) lective effects might perturb the binary photoassociation
" ' spectrum, causing broadening or shifts in the resonance
In Eq. (57) line profiles. Kagan et al. [45] have suggested the possi-
bility of observing quantum correlations in optical prop-
3\/2 erties of low temperature spin-polarized gases. The
2KP(An) = 32hvE)CVc agpé. (58) photoassociation spectrum of a cold dense atomic gas

near BEC might be a very fruitful source of experimen-
is identical in form to X2 from Eq. (49). It is the tal and theoretical investigation of 2- and 3-body interac-
single-cycleloss rate coefficient, due to passing the tons in such systems [11]. _
crossing once in each direction. The net rate is deter- Certainly the analysis in this paper shows that light

mined by the resonance expression. We can envision twoCan induce significant loss processes, in comparison to
possible limits. The first is the exact resonance case that caused by free atom light scattering, due to colli-

when the laser is tuned to the bound levelfse= 0. In ~ Sions between atoms in a 093|d atomic gas ne@Klor
this case, the resonance enhancement factor over thdelow at densities > cm™. If the density should
single pass result reduces ta4,, wherer, = 1/y, is the increase to > 18 cm3, the collisional loss rate will
decay time of leveb. But »,7, is just the numbeN, of dominate that due to atomic recoil heating, except

complete cycles in one lifetime. So the maximum loss between photoassociation resonances for large enough
rate coefficient is RT{v) = 8K® N,. The second limit ~ 'ed detuning. For the case of the MIT Na trap [3] the
is when the detuning is as far as possible from reso- blue detuning of the laser used to plug the hole in the
nance. Assuming equal spacing of vibrational levels, the Magnetic trap was so far off-resonance that any atomic

largest detuning is just half of the vibrational spacing; ©f binary light scattering did not prevent the formation
thus, the maximum detuning is judt = v, > y,. This of a condensate. But for much smaller detunings the

gives 1/¢r™N,) << 1 for the factor multiplying B in simple Franck-Condon formulas we have derived here
Eq. (57). The minimum value the rate coefficient can 9ive & way to estimate the binary collision rates for trap
take is KT = 2K®/(72N,). Of course, we must add the 0SS via excited state production. More detailed treat-
off-resonance contributions of all levels— 1, v + 1, ment, including incorporating the actual quasimolecular

etc., to get the total df-resonant rate coefficient. If the ~ Structure of alkali dimer states, could be readily incor-
vibrational spacing is assumed to be uniform, the porated into this framework. We have also developed a
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theory for treating the nonperturbative effect of light,
including multiphoton effects and the modification of
the ground state scattering length [9]. Careful attention
to collective effects also needs to be given for the case
of higher densities. In any case, it seems very unlikely
that a condensate could be stable for very long in the
presence of light tuned within a few hundred GHz of
atomic resonance.

8. Appendix A. Milne Equation Analysis
of Asymptotic Wavefunction

The use of the exact Milne quantum mechanical equa-
tions for the phase and amplitude of the wavefunction
lets us do an exact analysis of the asymptotic wavefunc-
tion. Let the wavefunction be writen in phase-amplitude
energy-normalized form:

W(R, E) = (2—“)”2 (R, E) sin@B(R, E)),  (60)

T

wherea satisfies the Milne equation [46, 47],

(dd_;z KR, E)) a(R, E) -a(%E)s = 0. (61)
The phase3 is calculated fromx by
B(R, E) = fa(%E)zdR, 62)
and the local wave vector is
K(R, E) = % - \/% (E-VR). (63)

The asymptotic potential i¥(R) = — Cs/R®.
In the semiclassical picture, we have the identifica-
tion of @ with the WKB amplitude

1
VkK(R, E)’

and the above forms are equivalent to the WKB wave-
function. The exact solution to the quantum equations
[Egs. (61) and (62)] give an exact quantum wavefunc-
tion. Here we will use an asymptotic analysis for the
wavefunction at moderately long range.

At long range the amplitude becomes constant, and
very large a€ - O:

a"B(R, E) = (64)

1
Vk.

As

27

A =

(65)
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Therefore, we want to calculate the departure of this
large, nearly independent d®, amplitude from its
asymptotic limit. We do this byapproximatingthe last
term of Eq. (61) by Xt*= k2 «. Then Eq. (61) becomes

2
o+ (KAR)—k?) a =0 (66)
Fa 2
d—Fé‘;—ﬁ—‘; V(R)a =0 (67)
o 2 1
d—é:-@—’j ce) Sea. (68)

Equation (68) can be immediately integrated to give

a(R) = a1 - 28, (69)
)

whereR; is defined by Eq. (13). WheR = 20"*R; =
2.1Rs, the amplitudea (R) has only changed by 5 %
from its asymptotic value... WhenR = Rg, the correc-
tion term is unity, and the asymptotic approximation
used in setting up the approximate Eq. (66) breaks
down. Therefore, the amplitude expression in Eq. (70)
can only be applied foR >> Rs.

Now we can turn our attention to deriving the correc-
tion to the asymptotic phase. This is done by substituting
the above amplitude, Eq. (70), into the phase [Eq. (62)].
The asymptotic phase at some suitable large value of
R = R- (a distance well beyond the range of the poten-
tial) is B. = k.(R. — As), whereAs is thes-wave scatter-
inglength. The phase function Rtis calculated by inte-
grating backwards fronR.,

R

BR) = k(R.—A) + f ERR D
= k(R —A) — k. J:x (1%%)4)2
=~ k(R.—A) — k. f; (1 +2 (%)‘de
= kx<R —As—g <%>4R> . (72)
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Combining the corrected phase and amplitude
expressions, Egs. (72) and (70), in Eqg. (60), we obtain
the expression given in Eq. (10) in the text. Note that the where
normalization stays close to #symptotio/alue, in spite
of the fact that the locdd(R, E) can be much larger than
k. in that part of the moderately long range region
where|V,| > E (see Fig. 2). Thus, the semiclassical
local WKB normalization does not apply. Note also that _1(
the node of the wavefunction & nearA; for the posi- T2 J; gcte COS(y — fe)dR. (81)
tive scattering length case is shifted from its value

FudE, 4) = 727“; ldE, AP, (79)

0

lefE, 4An) = f ag0eSinB,sinB.dR (80)

0

projected from the asymptotids. This is because the Inthe last line we have made the standard approximation

phase neak has not yet reached its asymptotic limiting  of neglecting the rapidly oscillating phase sum term.

value. This shift in the actual node to largBrcan The phase difference is expanded in a Taylor series
readily be estimated from Eq. (72): about a poinR;:
2 RB 4 d)(R! E) = Bg(Ra E)_BE(RI Ee) (82)
Rn_As_§<§> R.=0 (73)
1
=b0+b1(R—Rp)+§b2(R—R,)2+... , (83)
andR, = A, impliesR, = AS<1 + 2<&>4> (74)
3\A/ /) where
bo = By(Re: E) — BRe, Eo) (84)
9. Appendix B. Reflection Formula -
= Bg(Rpr E) _Z (85)
This derivation of the reflection approximation ex-
pression follows Jablonski [48] and the Appendix of Ref.
[49]. We begin by writing the ground and excited state by = dBo(R, E) | _ dBdR, E) (86)
. . . . dR Rp dR Rp
wavefunctions in energy-normalized phase-amplitude
form 1
22 | = a(R, B~ ke(Ro, E) (87)
VR, E) = (24)” oR, E) sins,R, E)  (75)
= ke — ke(Rp, Ee) (88)
VR, E —(2”“>”2 R, E.) sin8«(R 76
(RB)=\752) R E)SiN@AR, E)). (76) o - FB(RE) | _ FBJR, E) (&9)
2 drz % drz |Fr
whereE. = E + 4AA. The ground state amplitude and __Ok(R, E) (90)
phase are given by Egs. (70) and (72), whereas the - drR Ro
excited state quantities can be taken to be the standard
WKB ones: uDc
= - 91
7Ry e
ae(R, E) = 1 (77) In the normal semiclassical theof, is taken to be the
T VR, E) Condon point, wheréy = k. so thatb, = 0. Here we

simply take the point wherdy, vanishes. Since the

excited state potential is so steep with respect to the

effectively flat ground state potential, it is an excellent
approximation to tak®, = R = R: to all be equivalent.
Then from Eq. (78)B«(R,, E) = w/4. The expression for
where R, is the inner turning point of the repulsive b, follows from neglecting the ground state contribution
potential. The Franck-Condon factor is in comparison to the excited state one.

PR E)=[ R B R Gm ()
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We thus evaluate

ledE) = ag(Re, E)ae(R, Ee) 5 2 J cospo + b_ x?)dx

= a(Re. B) (25 ) “cod R ) - )
= () e, B) SnBR B (92)
s v v el cofb = 5 )
= 2% coqby = 3). (93)

Using Egs. (75) and (92) in Eq. (79) gives the desired
reflection approximation to the Franck-Condon factor:

FedE, 40) = 5= [¥ilRe, B (94)
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