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The rate coefficients are calculated for trap
loss due to excited state formation during
s-wave collisions of two atoms in a light
field in a cold atomic gas near conditions
for formation of a Bose-Einstein conden-
sate. Blue detuning from the allowed
atomic resonance transition causes excita-
tion of a replusive molecular potential,
whereas red detuning causes excitation
when the light is tuned near a bound vibra-
tional energy level of an attractive molecu-
lar potential. In either case, when the light
intensity is low and the detuning is large
compared to the natural linewidth of the
atomic transition, the rate coefficient for
the collisional loss rate is proportional to a
molecular Franck-Condon factor. A simple
reflection approximation formula is derived
which permits the rate coefficient to be
given analytically in either case. The
Franck-Condon factor is equal touCg(RC)u2/
DC, whereCg(RC) is the ground state
scattering wavefunction at the Condon point
RC, where the quasimolecule is in resonance

with the exciting light, andDC is the slope
difference between ground and excited
potentials atRC. The analytic reflection
approximation formula, as well as a simple
phase-amplitude formula for the intermedi-
ate range wavefunction, give excellent
agreement with the results of numerical
quantum mechanical calculations. The trap
loss rates due to binary collisions are com-
parable to or exceed those due to atomic
recoil heating for a wide range of detunings
to the blue of atomic resonance and near
the peaks of photoassociation resonances
for the case of red detuning.
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1. Introduction

Atomic collisions play a crucial role in the phenom-
ena of Bose-Einstein condensation (BEC) [1–3]. Elastic
momentum-transfer collisions control the rate of evapo-
rative cooling leading to the high phase-space density
required for the formation of a condensate. The ground
state scattering length, also a property of elastic colli-
sions, controls the nonlinear coupling parameter in the
nonlinear Schrodinger equation for the condensate
wavefunction [4]. Inelastic collisions among condensate
atoms also determine a lower bound to the loss rate of
the condensate (other processes may contribute to loss
as well) and thereby help determine the condensate life-

time. Therefore, it is crucial to understand these ground
state collisions. Calculating their rates requires that we
be able to compute the ground state scattering wavefunc-
tion. Although these collisions occur in the absence of
light, photoassociation spectroscopy offers a powerful
probe of the ground state wavefunction [5–8]. Light also
has the prospect for being an important probe of con-
densate properties and for manipulating a condensate or
even the collisions within a condensate. Therefore, it is
crucially important to understand how light affects the
atoms in a cold, dense atomic gas near the BEC regime.

This article will be concerned with understanding the
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rates of binary collisions in a weak, off-resonant light
field in a cold atomic gas. Since only the case of a weak
radiation field is treated, the effect of light on the binary
collision can be described perturbatively. The case of a
strong saturating field will be treated separately [9]. The
detuning is assumed to be large enough compared to the
natural atomic linewidthgA and the densityN moderate
enough that binary events are sufficiently isolated that
three-body collisions can be ignored, as well as collec-
tive effects [10]. Certainly, considering binary events is
the first step in understanding the effect of light on
interacting atoms. The object is to provide a simple
framework with which to understand these binary
events. They would need to be incorporated at a later
stage into a more comprehensive understanding of the
dynamics and stability of an atomic gas near BEC.
Elsewhere, we give a brief account of the possibility of
using photoassociation spectroscopy to probe many-
body interactions in a condensate [11].

Another important reason for having a simple model
for understanding these binary collisions in a light field
is to understand how spectroscopic methods can be used
as an experimental tool for probing the ground state
scattering wavefunction. In particular, we have proposed
that high resolution photoassociation spectroscopy
would provide an especially sensitive probe of the
ground state potential and scattering properties [5]. In
fact, this technique has been used to place bounds on
scattering lengths for Li [8], Rb [6], and Na [12, 13]
ground state collisions. Even tighter bounds should be
possible with improved experiments. In particular, we
will show below how the spectroscopy of very cold
gases might be use to measure properties of the ground
state wavefunction.

The primary effect of light on cold trapped atoms is
to cause loss processes by giving the atoms enough
energy to escape the trap. For example, a single atom
scatters light of frequencyv detunedDA = v –vA from
the atomic resonance frequencyvA at the rate,

gatomic = gASVA

DA
D2

, (1)

whereVA = Ï2pI /c dA is the Rabi frequency at laser
intensity I for the atomic transition with transition
dipoledA, and we assumeuDAu >> VA anduDAu >> gA; DA

is defined so as to be positive for blue detuning and
negative for red. Since each scattering event gives a
recoil momentum kick of"kv = "v /c to the atom, and
since the thermal momentum of the atom is comparable
to, or smaller than,"kv , this atomic light scattering
heats the atoms, causing their loss from the trap.

Binary events also cause loss of atoms from a trap,
but with a rate which is very different for the cases of
red and blue detuning. Figure 1 illustrates the two cases
schematically, using the molecular potential energy
curves for the quasimolecule comprised of the two col-
liding atoms. Blue detuning excites the ground state
atoms to a repulsive molecular state, causing the produc-
tion of excited atoms with kinetic energyEe = Eg + "DA.
This heating has been discussed in the context of optical
shielding [14,15,9]. The probability for this free-free
process is a smooth function of detuning. On the other
hand, red detuning excites the ground state atoms to a
bound eigenstate of the attractive molecular state. This
only happens with high probability if the light is tuned
close to exact resonance with the energyEy of the bound
vibrational statey . Since the decay of the bound state
mostly leads to products that are not trapped, this pro-
cess gives rise to a trap-loss photoassociation spectrum,
which is now well studied for the alkali dimers [16–21].
The probability for this free-bound process is a sharply
peaked function of detuning. We have every reason to
expect that a gas near BEC conditions, or even a conden-
sate itself, will possess a detailed photoassociation spec-
trum for detuning on the red side ofvA.

When the laser intensityI is sufficiently low, the
probability for both red and blue detuning loss processes
can be described by a Franck-Condon factor between
the ground and the excited state radial wavefunctions.
For both cases, we will give here a very simple analytic
expression for the Franck-Condon factor that is in excel-
lent agreement with fully quantal calculations. We will
show that the Franck-Condon factor is proportional to
uCg(RC, E)u2, the square of the ground state wavefunction
at the Condon pointRC, where the quasimolecule is in
exact resonance with the light. AtRC the difference
between excited and ground potentials exactly matches
"v . Our expression for the binary collision rate exhibits
the proper quantum threshold law behavior asE → 0. It
predicts that the binary collisional loss rate per atom,
gbinary, also varies asDA

–2 and at typical BEC densities
generally is comparable to or exceeds the atomic scatter-
ing rate, Eq. (1), for a wide range of blue detuning and
greatly exceeds the atomic scatering rate whenv is
tuned near a photoassociation resonance.

We will first describe the model and the basic proper-
ties of the ground state wavefunction. Then we will
discuss the binary collision rates for the case of blue
detuning and the reflection approximation for the free-
free Franck-Condon factors. Then we will describe the
modifications needed to describe the case of red
detuning and free-bound Franck-Condon factors.
Finally, we will consider some of the implications for a
cold atomic gas near BEC.
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dressed potentials cross at the Condon pointRC, the
point of quasimolecular resonance, where in the un-
dressed picture of Fig. 1, the difference of upper and
lower potential curves matches the photon energy"v :

"vA + Ve(RC) – Vg(RC) = "v (3)

Ve(RC) – Vg(RC) = "DA. (4)

In this paper we will carry out purely model illustra-
tive calculations. For this purpose it is sufficient to use
analytic Lennard-Jones potentials for the ground and
excited states,

Vi (R) = 4«iSSs
RD2n

– Ss
RDnD , (5)

i = g or e andn = 6 for the ground state van der Waals
potential andn = 3 for the excited state resonant dipole
potential. The long range variation isC6/R6 andC3/R3

respectively. We use a reduced mass characteristic of
sodium. It is difficult to show on one graph the poten-
tials over the very large range of energy and distance
involved in cold collisions. Figure 2 shows on alogarith-
mic scale the magnitudeuV(R)u/kB (where kB is the
Boltzmann constant) of the long range potentials for
the ground and excited states of the Na2 molecule, for
which we takeC6 = 1500 atomic units (e2a0

5, where
e = electron charge anda0 = Bohr radius = 0. 0529 nm)
and uC3u = 10 atomic units (e2a0

2). Figure 3 shows on a
linear scale the ground and attractive and repulsive
excited state potentials, as well as illustrative wavefunc-
tions for each. Since the excited potential is orders of
magnitude stronger than the ground state at long range,
it is an excellent approximation to neglect the ground
state contribution in calculating the Condon point:

uDAu =
uC3u
RC

3 ⇒ RC = UC3

DA
U1/3

. (6)

Figure 2 also indicates the detunings associated with
eachR, taken as a Condon point. Note that the ground
state interaction strength is not negligible at intermediate
R, but is stronger than 1mK wheneverR is less than
about 300a0.

3. Ground State Wavefunction

3.1 Long Range Form

We need the ground state wavefunction to use in the
reflection formula for the Franck-Condon factors
we derive below. When the collision energyE is low

Fig. 1. Schematic diagram of quasimolecular potential energy
curves for two atoms with an allowedS → P transition, showing
free-bound and free-free absorption for respective red and blue detun-
ing from the atomic resonance frequencyvA.

2. Model

The binary collision rates for the two cases described
in Fig. 1 will be expressed in terms of Franck-Condon
factors between the ground and excited state wavefunc-
tions. However, it is very desirable to formulate the
problem using the field-dressed molecular picture of a
collision in a light field. This procedure is well-
documented elsewhere [22–27], even for cold collisions
[28–30,5,14], and need not be described in detail here.
A two-state model with a single ground state and a
single molecular excited state will be assumed. In the
weak-field limit it is straightforward to generalize to
multichannel ground and excited states for real alkali
systems with hyperfine structure. In fact, we have now
developed computer codes that let us include both
ground and excited state molecular hyperfine structure
for alkali species for optical transitions in the weak field
limit [12, 13]. The ground state potential isVg(R) and
the excited state potential isVe(R) – " DA, where bothVg

andVe → 0 asR→ `. The ground and excited states are
coupled optically by the interaction matrix element
"V (R), where the molecular Rabi frequency is

V (R) = Ï2p I /c d(R) = b(R)VA , (2)

where d(R) is the molecular transition dipole, and
0 # b(R) # 2/Ï3 relates the molecular and atomic
Rabi frequencies. The particular value ofb depends on
the molecular states involved. The ground and excited
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where theÏ2m /p"2k` factor ensures energy normal-
ization, ukCg

+(E)uCg
+(E')lu2 = d (E – E'). The asymptotic

kinetic energy isE = "2k`
2/2m , wherem = mA/2 is the

reduced mass, the deBroglie wavelength isl` = 2p /k`,
and the velocityy` = " k/m . It is sometimes more
convenient to write the energy normalization factor as

S 2m
p"2k`

D1/2
=

2

(hy`)1/2
. (8)

If E is small enough, the asymptotic phasehg = np –
kgAs, where As is the scattering length andn is the
number of bound states supported by the ground state
potential; thenp term can be ignored, since it only
introduces an inessential phase factor. The scattering
length is a property of the whole potential and for real
atoms is very sensitive to small uncertainties in the short
range, chemical bonding, range ofR. However, the scat-
tering length provides a good parameter to characterize
the effect on the long range wavefunction of the com-
plete potential.

Figure 4a illustrates typical ground state wavefunc-
tions (in their real form without the trivial complex
phase factor eihg) with positive, zero, and negative scat-
tering lengths. These were calculated by making slight
changes in the model potential parameters. The inner
region wavefunction, say forR < 30 a0, is characterized
by rapid oscillations as the local kinetic energy
increases due to the acceleration by the attractive ground
state potential. The intermediate range wavefunction,
say for 80a0 < R < l`/4, is nearly linear inR and
extrapolates to an intercept nearR = As:

Cg
+(R, E) ≈ eihg S 2m

p"2D1/2 k`(R – As)

Ïk`

. (9)

A much more accurate representation of the ground
state wavefunction in the intermediate range is found by
correcting for the variation in phase and amplitude
due to the nonzero ground state potential. The details
of this derivation, based on an approximate treatment of
the rigorous Milne equation for the phase-amplitude
form of the wavefunction, are given in Appendix A. The
result is that a more correct form of the long range
wavefunction is found from Eqs. (60), (69), and (72)

Cg
+(R, E) = eihgS 2m

p"2k`
D1/2

3 a(R) sin(k`r (R)), (10)

where

a(R) = 1 –SRB

RD4
(11)

Fig. 2. Magnitude of long range ground state van der Waals and
excited state resonant dipole interaction potentials, shown using log
scales. The interaction strengths were taken to beC6 = 1500 atomic
units andC3 = 10 atomic units respectively, characteristic of Na atom
interactions. The scale on the right hand side of the figure gives the
detuningDA corresponding to the Condon points associated with the
resonant dipole curve.

Fig. 3. Long range ground and attractive and repulsive potentials on
a linear scale for the same long range parameters as for Fig. 2. Typical
free and bound excited state wavefunctions for a Na reduced mass are
also shown, for an exit channel with 5 cm21 kinetic energy and for a
bound state with a binding energy of 4.87 cm21. The 2mK ground state
wavefunction is nearly linear between 60a0 and 200a0.

enough, only collisions with zero relative angular mo-
mentum of nuclear motion contribute to scattering cross
sections. Thes-wave ground state wavefunction takes on
the following well-known behavior asR → `:

uCg
+(E)l , eihgS 2m

p"2D1/2

sin(k`R + hg)

Ïk`

, (7)
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and 120a0 for a model Na potential withAs = + 84.3a0.
Such a magnitude ofAs is near the actual value for
doubly spin-polarized Na [31,32,12]. The actual wave-
function node at 87.5a0 is shifted 3.2a0 further out than
As, as accurately predicted by Eqs. (10) and (74). A
much larger shift of 18a0 in node position is predicted
for 87Rb.

Fig. 5. (a) Comparison of the exact calculated ground state wave-
function (points) with the predictions of the phase amplitude approx-
imation, Eq. (10), using a Na reduced mass and a potential for which
AS= 84.3a0. The actual node position atR= 87. 5a0 is shifted to larger
R. The node position is independent of collision energy, as predicted
by Eq. (12).Fig. 4. (a) Comparison of characteristic ground state near-threshold

wavefunctions at 1.4mK collision energy. The wavefunctions were
calculated using a Na reduced mass and three different hypothetical
model potentials which yield scattering lengthsAs = – 96a0, 0,a0, and
+ 101a0. The intermediate range wavefunction projects to a node near
R = As. Of course, the scattering length for any real atomic species is
fixed by the actual interaction potential and can not be varied (except
possibly by introducing external fields). (b) Comparison of the scatter-
ing wavefunction for the potential for whichAs = + 101a0 with the last
bound state wavefunction (bound state binding energy is 2.6 mK),
when both are given a common WKB normalization near the distance
of the deepest part of the ground state potential.

3.2 Short Range Form

Before leaving this discussion of the ground state
wavefunction, it is useful to comment on the nature of
the short range wavefunction asE → 0. When the colli-
sion energyE decreases towards zero, there will always
be a characteristic quantum threshold connection be-
tween the asymptotic and short range wavefunction. It is
possible to define a characteristic distanceRQ where the
WKB connection between the asymptotic and short
range wavefunctions strongly breaks down for collision
energiesE < EQ [33, 34]. A necessary condition for
onset of the threshold law behavior isE << EQ. The
values ofRQ andEQ are determined by requiring that the
maximum in the function dl (R, E)/dR satisfy the
following condition:

dl (RQ, EQ)
dR

=
1
2

. (14)

where the local deBroglie wavelengthl (R, E) is defined
by Eq. (63) in the Appendix A. For allE < EQ there is
a range of distances aroundRQ where dl (R, E)/dR> 1/2

r (R) = R – As –
2
3 SRB

RD4
R. (12)

Equation (10) only applies in the regionR >> RB so that
the correction term (RB/R)4 << 1, where

RB = Sm C6

10"2D1/4
(13)

is a constant independent of energy with dimensionality
of distance. It has a value of 42a0 for Na and 77a0 for
Rb. Figure 5 compares the exact wavefunction and the
result of Eq. (10) in the near linear region between 60a0
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and the WKB approximation fails. Using Eqs. (17) and
(18) of [34],

RQ =
201/4

21/2(7a)1/6
RB = 1. 043RB , (15)

wherea =
1
27 S14

3 D3 S7
2D1/2

= 7.0419. Thus, we find that

RB = 0.96RQ, independent of potential parameters (since
both have identical scalings withC6 and m ), and the
defined parametersRB andRQ turn out to be fortuitously
very close in magnitude. Since each of these only de-
fines a qualitative range of distance associated with a
change in the wavefunction, they can be used inter-
changably. The WKB breakdown region is actually very
broad (An example for a He mass is in Fig. 3 of
Ref. [33]), and becomes broader as energy is lowered
belowEQ = 19 mK for Na orEQ = 1. 5 mK for Rb [34].
Therefore, significant departure from the WKB form
begins at distances well to the right ofRQ, and Eqs. (10)
and (11) show that the amplitude of the intermediate
range wavefunction remains much closer to its asymp-
totic amplitude~1/Ïk` than to the local WKB ampli-
tude~1/Ïk(R, E). Thus, the amplitude of the ground
state wavefunction does not appreciably exhibit the ac-
celeration due to the ground state potential unlessR is on
the order of or less thanRQ ≈ RB. This is one of the
reasons why a semiclassical analysis fails in the long
range region asE → 0.

The form of the wavefunction in Eq. (60) is com-
pletely rigorous at all distances and energies, providing
that the Milne equation described in Appendix A is
solved exactly. References [33, 34] show that the ground
state wavefunction for the inner regionR << RQ is well
approximated by the form

C g
+(R, E) = (Aik`)1/2 eihgS 2m

p"2D1/2
ag

WKB(R, E)

3 sin(bg
WKB(R, E)) (16)

= (Aik`)1/2 Cg
WKB+ (R, E = 0), (17)

whereAi is an energy-independent constant having the
dimension of length andag

WKB(R, E) = 1/Ïkg (R, E) is
the WKB amplitude. Equation (16) shows that
the overall shape of the inner range wavefunction,
Cg

WKB + (R << RQ), is independent of energy, whereas the
overall amplitude decreases as (Aik`)1/2 asE → 0. This
is illustrated in Fig. 4b, which shows a scattering wave-

function near threshold and the wavefuncton for the last
bound state, both normalized at short range to the same
WKB form. Scattering wavefunctions near threshold, as
well as the last bound state wavefunction, when given
this common normalization, are almost indistinguish-
able forR < RQ. The physical reason for this is that the
local amplitude and phase are determined by the ground
state potential in a region where it is very deep com-
pared to the initial collision energy or bound state bind-
ing energy.

Both the inner range and outer range approximate
wavefunctions, Eqs. (16) and (10), are proportional to
Ïk`, in accordance with the threshold law requirement
that the ground state wavefunction forR << 1/k` every-
where vanishes asÏk`. This ensures that the probabil-
ity for inelastic processes due to the ground state en-
trance channel vanish ask` asE → 0. This is the basic
threshold law for inelastic collision rates which must be
satisfied for light-induced inelastic events for either red
or blue detuning.

4. Collisions for Blue Detuning

The case of cold collisions in a blue detuned light field
has been extensively studied recently, both experimen-
tally and theoretically [14,15,9,35–41]. Figure 4a shows
the ground and excited state potentials for the case of a
very large detuning of 5 cm–1, or 300 GHz, from atomic
resonance. If the light intensity is strong enough (this
will be defined more precisely below), the ground state
atoms approaching one another encounter an effective
repulsive interaction near the Condon pointRC and are
repelled. This gives rise to the phenomenon of optical
shielding [15,9,35–41], by which the light prevents the
atoms from approaching closer thanRC, thereby reduc-
ing the rate of ground state processes which require the
atoms to be closer together thanRC. The light also mod-
ifies the ground state elastic scattering rate and scatter-
ing length, and results in the creation of hot excited state
atoms which share the kinetic energy released,"DA

[14,15,9]. Since we are considering the weak field limit
here, the shielding effect is small and we will concen-
trate on the latter energy release process. The event rate
coefficient for this process is

Ke(DA) = Kpyg

k2
g

Pe(E, DA)L = Kp"
mkg

Pe(E, DA)L, (18)

where the brackets imply an average over the distribu-
tion of ground state velocitiesyg, and

Pe(E, DA) = uSeg(E, DA)u2 (19)
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is the probability for the event by which two ground
state atoms collide in a light field and produce one
excited and one ground state atom, both of which have
enough kinetic energy to escape any weak trapping
potential.

When the radiative coupling is small, the radiative
distorted wave approximation [24,26,27], can be used
for the S-matrix element:

Seg(E, DA) = – 2pi kC e
–(E + "DA)Veg(R)C g

+(E)l,

(20)

whereVeg(R) = "V (R) from Eq. (2). The kinetic energy
in the asymptotic ground and excited state channels are

E andE + "DA respectively. The asymptotic excited state
wavefunction is:

uC e
–(E, DA)ul , e–iheS 2m

p"2ke,̀
D1/2

sin(ke,̀ R + he) .

(21)

The ground and excited state wavefunctions are also
illustrated in Fig. 6a. The excited state wavefunction
oscillates much more rapidly than the ground state one
because of the much greater kinetic energy in the exit
channel.

By assuming that the radiative couplingVeg(R) is
either independent ofRor slowly varying withR near
RC, then this term can be removed from the integrand in

Fig. 6. (a) Ground and repulsive excited state field-dressed potentials for a blue detuningDA of
5 cm–1 = 300 GHz and laser intensityI = 0. The crossing atR = RC becomes an avoided crossing
whenI Þ 0. Ground and excited state wavefunctions are also shown. (b) Similar figure for the case
of a red detuningDA of –4.87 cm21, in resonance with they = 84 level of the attractive excited
potential.
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Eq. (20), giving the radiative distorted wave result that

Pe(E, DA) = 4p2VC
2 ukCe

–(E, DA)uCg
+(E)lu2 (22)

= 4p2VC
2Feg(E, DA), (23)

whereVC = Veg(RC) and

Feg(E, DA) = ukCe
–(E, DA)uC g

+(E)lu2 (24)

is a free-free Franck-Condon factor. Although direct
evaluation of Feg by numerical quadrature does not
converge, since both wavefunctions oscillate with finite
amplitude toR = `, there are several methods available
for evaluatingFeg numerically [27], as well as approxi-
mate formulas based on the local nature of the integrand
near the Condon pointRC. Here we use a two-state close
coupled scattering calculation of the collision in a weak
radiation field with anR-independent Rabi frequency,
and extractSeg(e) from the asymptotic field-dressed
wavefunction [24–27]. Then the Franck-Condon factor,
independent of the laser intensity chosen for the calcula-
tion, is calculated from:

Feg(E, DA) =
uSeg(E, DA)u2

4p2 VC
2 , (25)

whereSeg(E, DA) is calculated using a standard close
coupling scattering code. This method can be general-
ized to a multichannel version when there are more than
two channels [27], and thus could be used for atoms
with hyperfine structure [12, 13].

Figure 7 showsFeg calculated for collision energy
E/kB = 2 mK using a model ground state potential with
the reduced mass for Na collisions and a calculated
scattering length of +84.3a0. The detuning range corre-
sponding toR = 20a0 to 200a0 is 8 THz to 8 GHz. The
Franck-Condon pattern shows an oscillatory pattern
versusRC or detuning.

5. Reflection Approximation

We will now turn our attention to developing approx-
imations that will give considerable physical insight into
the nature of light scattering at very low collision energy.
Let us first look at semiclassical approximations. We
will assume a single Condon pointRC. Thus, our analy-
sis does not apply to states with significant contributions
from two Condon points, such as the low vibrational
levels of the 0g– state of Na2 [12, 13]. A semiclassical
approximation for the free-free Franck-Condon factor
FSC

eg (E) is given by Eq. (46) of the reference [42] (we
remove the uninterestingVC

2 factor):

FSC
eg (E, DA) =

2
hyCdC

, (26)

where

DC = U d
dR

(Ve(R) – Vg(R))UR = RC
(27)

≈ 3C3

RC
4 =

3
RC

uDAu (28)

is the difference in potential slopes evaluated atRC and
yC = yg(RC) = Ï2(E – Vg(RC)/m is the local velocity at
RC. The second equation follows from neglectingVg in
comparison toVe. The corresponding semiclassical
treatment in the field-dressed picture of Fig. 6a is given
by the Landau-Zener (LZ) approximation [14,15,9] for
Pe:

PLZ
e (E, DA) = 2 e2AC (1 – e2AC) ≈ 2 AC. (29)

The latter approximation applies when the dimension-
less LZ adiabaticity parameter

AC =
4p2VC

2

hyCDC
(30)

is small compared to unity. This condition also ensures
the low intensity regime of linear variation ofPe with
light intenstiy. Using Eq. (25) to obtainFSC

eg (E) from
Eq. (29) gives exactly the same expression as in
Eq. (26). Note that both Eqs. (26) and (30) have left out
the phase factor sin2(bg(RC) – be(RC)). Actually, the
phase factor has been replaced by its average value, 1/2.
Note thatPe

LZ given by Eq. (29), even with the phase
factor, does not satisfy the threshold law requirement to
vary ask` asE → 0. In fact,FSC

eg (E) from Eq. (26) is in
very poor agreement with the quantum mechanical
feg(E) in Fig. 7 and is not shown in the figure.

The usual stationary phase derivation of Eq. (26) can
be adapted to give the correct threshold law asE → 0.
The details are given in Appendix B. The result is a key
result of this paper, a simple reflection formula:

FR
eg(E, DA) =

1
DC

uC g
+(RC, E)u2. (31)

The Franck-Condon factor is directly proportional to the
square of the ground state wavefunction. It only depends
on the excited state through the slope termDC. This
expression explicitly satisfies the threshold law, since at
all distancesR << l`, uCgu2 is proportional tok` whenE
is sufficiently smaller thanEQ [33, 34]. WhenR > RQ,
the quantum wavefunction is well-approximated by
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Fig. 7. Comparison of exact and approximate evaluations of the Franck-Condon factors
for different Condon pointsRC. The correspondance of detuning toRC is indicated on the
top horizontal axis. The free-free Franck-Condon factors have dimensionality of
(energy)22, where here energy is expressed in cm–1 units. Since the same magnitude of the
C3 coefficient was use for the repulsive and attractive curves in our model calculations, the
exact free-bound Franck-Condon factors are seen to lie on nearly the same curve as the
free-free ones, when the former are divided by­Ey /­y to normalize them per unit energy.
This is as predicted by Eqs. (31) and (41). The reflection approximation formula of Eq.
(31), uCg(RC)u2/DC, is in excellent agreement with the exact calculations over the whole
range shown. The intermediate range phase-amplitude formula, Eq. (32), is good agree-
ment forR > 70 a0. (a) logarithmic scale (b) linear scale showing region near outer nodes.
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Eqs. (10) – (12), and the intermediate range phase-
amplitude approximation toFR

eg is:

Feg
PA(E, DA) =

4
hy`DC

aC
2sin2(k`rC). (32)

whereaC = a(RC) andrC = r (RC). The basic difference
between this formula and the Landau-Zener one,
Eq. (26), other than the phase factor, is the presence of
the asymptotic ground state velocity in the denominator
instead of the local velocityyC. If RC is in the range
RQ << RC << l`/2 so that the sin function is linear in its
argument, then

FPA
eg(E, DA) =

2maC
2rC

2

p"2DC
k` . (33)

The equivalent approximation forPe is found from
Eq. (23),

Pe(E, DA) =
16p2VC

2

hy`DC
aC

2k`
2 rC

2. (34)

Figure 7 also shows the predictions of theFR andFPA

formulas compared to the exact results for 2mK colli-
sions. The full reflection formula is an excellent approx-
imation over a wide range of Condon points, and even
remains very good into about 20a0 where the ground
state has accelerated the atoms to a velocity much higher
than their initial one. TheFPA approximation formula is
also excellent at intermediate range, untilR begins to
approachRB ≈ RQ. Figure 8 compares the exact andFPA

results for other collision energies up to 2 mK. We see
that the reflection approximation is very good for almost

the whole range of temperatures encountered for
trapped laser cooled atoms, including theE → 0 limit.

6. Collisions for Red Detuning

We can carry out a very similar treatment for the case
of the free-bound Franck-Condon factor for red detun-
ing. Figure 6b illustrates the dressed potentials and
wavefunctions for a red detuning case. The basic differ-
ence from blue detuning is that the attractive potential
supports discrete bound states. When the laser fre-
quencyv is tuned near the position of a particular bound
level with vibrational quantum numbery , the level can
be excited and decay to some productp, which is no
longer trapped. The decay process is primarily sponta-
neous emission leading to formation of molecular spe-
cies or hot atoms [28, 42]. In the field dressed picture of
Fig. 6b, the bound state is a scattering resonance embed-
ded in the continuum very close to threshold. The rate
coefficient for red detuning is also given by Eq. (18), but
the S-matrix element is given by a modified resonant
scattering form described by Napolitano et al. [5]:

uSpg(E, y , DA)u2

=
gpgs(E, y , DA)

SE – Dv

" D2
+ (gv/2)2)

, (35)

whereDv is the detuning relative to the positionEv of the
bound state. The total decay rate of the excited bound
statey is gy = gp + gs(E, y , DA) + go, wheregp is the rate
by which the bound state resonance decays to the de-
tected product,gs(E, y , DA) is the stimulated emission

Fig. 8. Comparison of the exact free-free Franck Condon factors and the predictions of
the phase-amplitude formula, Eq. (32), for higher collision energies,E/kB = 2 mK, 200mK,
and 2000mK = 2 mK. The breakdown of the reflection approximation is seen at the larger
RC for 2000mK.
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rate back to the ground state continuum, andgo is the
decay rate due to any other undetected processes (such
as molecular predissociation). The critical element for
our purposes is thegs(E, y , DA) factor, which describes
how the cold colliding atoms couple to the excited bound
state. For low light intensity, this factor is given by the
Fermi golden rule expression [5]:

gs(E, y , DA) =
2p
"

ukCe(y )uVeg(R)uCg
+(E)lu2, (36)

whereCe(y ) is the unit-normalized bound state wave-
function of the excited bound state. Using the same
factorization approximation as for Eq. (23), this can be
written in terms of a bound-free Franck-Condon factor,

gs(E, y , DA) =

2p
"

VC
2 ukCe(y )uCg

+(E)lu2 (37)

=
2p
"

VC
2 Feg(E, y , DA). (38)

The assumption is thatVC
2 is evaluated at a single

Condon point; if there is more than one Condon point,
the interference between the different amplitudes from
each Condon point would need to be taken into account.

The derivation of the reflection approximation
formula for the bound-free Franck-Condon factorFeg(E,
y , DA) follows immediately from the same treatment in
Appendix B that we used in deriving the free-free
Franck-Condon factor. The essential difference is that
the unit-normalized bound state wavefunction can also
be written in energy-normalized phase-amplitude form
just like Eq. (16), as is commonly done in generalized
multichannel quantum defect theory [44]. It is only
necessary to introduce the vibrational spacing

­Ey

­y
= hny , (39)

where ny is the vibrational frequency, the number of
complete vibrational cycles per unit time. Then the unit
normalized bound state wavefunction has the form [44]

Ce(R, y ) = S­Ey

­y D1/2 S 2m
p"2D1/2

ae(R, y ) sin(be(R, y )).

(40)

wherea and b can be determined quantum mechani-
cally from Eqs. (61) and (62), or alternatively, from the
WKB form, Eq. (64). The derivation in Appendix A,
adapted for a right hand turning point, carries through to
give

Feg(E, y , DA) =
­Ey

­y
1

DC
uCg

+(RC, E)u2, (41)

where Cg
+(RC, E) can be calculated exactly or taken

from Eq. (10)) above. The vibrational spacing function
can be evaluated approximately from the discrete level
spacing,

­Ey

­y
≈ Ey+1 – Ey–1

2
, (42)

or more rigorously from the wavefunction at some short
range pointR0:

­Ey

­y
=

p"2

2m Sk0uCe(R0, y )u2 +
1
k0
UdCe(R0, y )

dR U2D, (43)

where k0 = ke(R0). This equation immediately follows
from Eq. (40) upon using the WKB forms in Eqs.
(77)–(78). The result depends only weakly on the choice
of R0 as long as it is in the classical region of the
potential well. We use Eq. (43) in the numerical results
described below.

Although the free-free and free-bound Franck-
Condon factors have different dimensionality, they may
be compared by evaluating the free-bound Franck-
Condon factor per unit energy, orFeg(y , DA)(­Ey /­y )21.
Figure 7 also shows the results of evaluating this func-
tion for a number of discrete bound levels using an
attractive potential that has the same magnitude of the
C3 long range potential coefficient as for the repulsive
state (see Fig. 3). Each bound level defines a distinct
Condon point nearly equal to the outer classical turning
point. The free-bound and free-free Franck-Condon
factors fall on almost exactly the same curve in Fig. 7,
even whenRC is as small as 20a0. This is expected from
the fact that the free-free and free-bound transitions in
the model calculation have the same ground state wave-
function andDC at the same Condon points. The results
in Fig. 7 show that the reflection approximation is just as
good for bound states as for free states.

Now we can easily derive from Eqs. (38) and (41) a
simple expression for the stimulated decay rate of the
excited bound state to the ground continuum,gs(E, DA):

gs(E, DA) =
2p
"

VC
2

DC
hny uCg

+(RC, E)u2 (44)

=
2p
"

VC
2

DC
hny

4
hy`

aC
2 sin2(k`rC) (45)

= H16p2VC
2

hy`DC
aC

2k`
2 rC

2Jyb (46)

= Pe(E)yb. (47)
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The probabilityPe(E) in Eq. (47), defined by the ex-
pression in braces in Eq. (46), isidentical in form to the
probability in Eq. (34) for a free-free transition. The
expression in Eq. (47) thus has a pleasing physical inter-
pretation: the total rate of decay out of the bound state
is the probability of decay during one vibration cycle
(corresponding to a “complete” collision with incoming
and outgoing parts) times the frequency of vibration
(number of cycles per second). The overall probability
for the photoassociation transition, given by the reso-
nance scattering expression in Eq. (35), explicitly
exhibits the threshold law form due to thegs factor in the
numerator.

The form in Eq. (44), proportional to the square of the
ground state wavefunction, will also give the threshold
law form forp- andd-waves, etc. It also explicitly shows
why the photoassociation spectra map out the nodal
structure of the ground state wavefunction in the inten-
sity pattern versus vibrational quantum number [28, 17]:
as detuning DA changes from level to level, the
Franck-Condon factor tracks the ground state wavefunc-
tion at the changingRC. This effect is expected to be
much cleaner in very low temperature spectra, where
only s-waves contribute, than in most of the existing
higher temperature experiments, wheres-, p-, d-waves,
etc., all may contribute. Thep- and d-waves do not
generally have the same nodal structure in the interme-
diate range as thes-wave does.

7. Collision Rates Near BEC

In order to estimate the effect of binary collisions in
a cold dense atomic gas, it is necessary to compare the
rate for the binary process with the atomic scattering
rategatomic in Eq. (1). The binary event rate is

gbinary = Ke(DA)N, (48)

whereKe is given by Eq. (18). For the purpose of esti-
mating the relative importance of atomic and binary
light scattering events in causing loss of trapped atoms
due to heating, it is necessary to comparegatomic and
2gbinary, since two atoms are lost per binary event. For
the large detuning and moderate density conditions we
consider, the influence of any collective effects on light
scattering is not likely to alter significantly these basic
magnitudes. We will base our estimates on the interme-
diate range formulas forR > RB, Eqs. (34) and (46),
since these apply to a wide range of detuning from near
resonance to beyond 100 GHz.

Using Eqs. (34) in (18), the rate coefficient for trap
loss events for blue detuning in the intermediate range is

2Ke
blue(DA) =

32p3VC
2

hDC
aC

2rC
2. (49)

This expression is independent of collision temperature,
as is should be. Using Eqs. (2), (6) and (28) and the fact
that we can write [43, 42]

C3 = f3"gASlA

2pD3
, (50)

the rate coefficient can be algebraically transformed to
the form

2Ke
blue(DA) =

2bC
2f3

3p
gASVA

DA
D2 1

Nl
fC. (51)

In Eq. (50)f3 is a fraction of order unity depending on
the particular molecular states involved (In Hund’s case
(a) it is 1/2 for aS state and 1/4 for aP state; in general
it will be a function ofR that can be worked out for any
particular state). The following definitions are used in
Eq. (51):

bC = b(RC) (52)

Nl =
1

lA
3 (53)

fC = S1 – SRB

RC
D4D2 S1 –

As

RC
–

2
3 SRB

RC
D4D2

. (54)

Recall thatb(R) is defined by Eq. (2). The 2bC
2f3/3p

factor in Eq. (51) is a dimensionless molecular physics
factor depending on the specific transitions involved,
and it has a maximum value of

4
9p

≈ 1
7
.

The densityNl corresponds to one atom per cubiclA.
The density near BEC conditions in a cold atomic gas is
typically larger thanNl . The factorfC has a nominal
order of magnitude unity and reflects the phase of the
ground state wavefunction. It will have a node nearAs if
As is positive and in the intermediate range.

Using Eq. (51), we find

2gbinary
blue

gatomic
≈ 1

7
N
Nl

fC. (55)

This fraction is nearly independent of the blue detuning
DA over a wide range, sincefC ≈ 1 (except near the node).
SinceNl = 531012 cm23 for Na and 231012 cm23 for Rb,
we see that the order of magnitude of the light-induced
binary collision loss rate is comparable to or larger than
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the atomic light scattering rate when the density is in the
range of 1013 to 1014 cm23.

It is also possible to get a simple expression for the
rate coefficient for trap loss due to a bound state photo-
association resonance by using Eqs. (47) and (35) in
Eq. (18). The thermal average can be greatly simplified
at very lowT whenkBT is very small compared to the
linewidth gy of the bound state photoassociation reso-
nancey . Since the numerator of the resonance scatter-
ing S-matrix element, Eq. (35), satisfies the threshold
law form, the energy-dependence disappears in the
numerator of the resonance scatttering rate coefficient
expression. Then we are left only with the energy depen-
dence in theE –Dy term in the denominator of Eq. (35).
But sincekBT is small compared toeither of the terms
in the denominator, theE dependence is negligible and
can be dropped. We also assumegy = gp, that is, each
decay results in a loss event, since the stimulated decay
rate is assumed to be small (gs << gy ). Thus, the thermal
average rate coefficient due to resonancey becomes, in
the T → 0 limit,

2Ke
red(y ) = Spy`

k`
2 gs(y , DA)D gp

(Dy )2 + (gy /2)2
(56)

= 2Ke
(1) ny gp

(Dy )2 + (gy /2)2
. (57)

In Eq. (57)

2Ke
(1)(DA) =

32p3VC
2

hDC
aC

2rC
2. (58)

is identical in form to 2Ke
blue from Eq. (49). It is the

single-cycleloss rate coefficient, due to passing the
crossing once in each direction. The net rate is deter-
mined by the resonance expression. We can envision two
possible limits. The first is the exact resonance case
when the laser is tuned to the bound level soDv = 0. In
this case, the resonance enhancement factor over the
single pass result reduces to 4nyty , wherety = 1/gy is the
decay time of levely . But nyty is just the numberNy of
complete cycles in one lifetime. So the maximum loss
rate coefficient is 2Ke

max(y ) = 8Ke
(1) Ny . The second limit

is when the detuning is as far as possible from reso-
nance. Assuming equal spacing of vibrational levels, the
largest detuning is just half of the vibrational spacing;
thus, the maximum detuning is justDy = pny >> gy . This
gives 1/(p2Ny ) << 1 for the factor multiplying 2Ke

(1) in
Eq. (57). The minimum value the rate coefficient can
take is 2Ke

min = 2Ke
(1)/(p2Ny ). Of course, we must add the

off-resonance contributions of all levelsy – 1, y + 1,
etc., to get the total off -resonant rate coefficient. If the
vibrational spacing is assumed to be uniform, the

minimum rate coefficient from summimg over all such
contributions is≈ 2Ke

(1)/(4Ny ). Thus, we estimate

1
4Ny

(2Ke
(1)) < (2Ke

red) < (4Ny )(2Ke
(1)). (59)

From Eq. (59) and (55), and the fact thatNy >> 1
wheneverDA >> gA, we see that 2gbinary

red will be a sharply
peaked function that is much smaller than 2gbinary

blue (for
the sameuDAu) whenv is tuned between resonances, but
which is much larger than 2gbinary

blue when thev is tuned
to a photoassociation resonance. Therefore, by detuning
to the red side of atomic resonance, the effect of binary
collisions can be made to be either very large or very
small compared togatomic. The cold atomic gas will have
a prominent photoassociation spectrum, and the rate for
photodestruction at the peak positions will measure the
ground state pair correlation function~uCg(RC)u2 at the
Condon points for the transitions. There is a discrete set
of Condon pointsRC(y ), corresponding to the outer turn-
ing points for the vibrational levels of the upper molec-
ular state. There are several well-known alkali dimer
transitions that have already been studied [7] in much
hotter traps than the < 1mK traps that are now available.
The intriguing question remains whether 3-body or col-
lective effects might perturb the binary photoassociation
spectrum, causing broadening or shifts in the resonance
line profiles. Kagan et al. [45] have suggested the possi-
bility of observing quantum correlations in optical prop-
erties of low temperature spin-polarized gases. The
photoassociation spectrum of a cold dense atomic gas
near BEC might be a very fruitful source of experimen-
tal and theoretical investigation of 2- and 3-body interac-
tions in such systems [11].

Certainly the analysis in this paper shows that light
can induce significant loss processes, in comparison to
that caused by free atom light scattering, due to colli-
sions between atoms in a cold atomic gas near 1mK or
below at densities > 1013 cm23. If the density should
increase to > 1015 cm23, the collisional loss rate will
dominate that due to atomic recoil heating, except
between photoassociation resonances for large enough
red detuning. For the case of the MIT Na trap [3] the
blue detuning of the laser used to plug the hole in the
magnetic trap was so far off-resonance that any atomic
or binary light scattering did not prevent the formation
of a condensate. But for much smaller detunings the
simple Franck-Condon formulas we have derived here
give a way to estimate the binary collision rates for trap
loss via excited state production. More detailed treat-
ment, including incorporating the actual quasimolecular
structure of alkali dimer states, could be readily incor-
porated into this framework. We have also developed a
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theory for treating the nonperturbative effect of light,
including multiphoton effects and the modification of
the ground state scattering length [9]. Careful attention
to collective effects also needs to be given for the case
of higher densities. In any case, it seems very unlikely
that a condensate could be stable for very long in the
presence of light tuned within a few hundred GHz of
atomic resonance.

8. Appendix A. Milne Equation Analysis
of Asymptotic Wavefunction

The use of the exact Milne quantum mechanical equa-
tions for the phase and amplitude of the wavefunction
lets us do an exact analysis of the asymptotic wavefunc-
tion. Let the wavefunction be writen in phase-amplitude
energy-normalized form:

C (R, E) = S 2m
p"2D1/2

a (R, E) sin(b (R, E)), (60)

wherea satisfies the Milne equation [46, 47],

S d2

dR2 + k2(R, E)D a (R, E) –
1

a (R, E)3 = 0. (61)

The phaseb is calculated froma by

b (R, E) = E 1
a (R, E)2 dR, (62)

and the local wave vector is

k(R, E) =
2p

l (R)
= Î2m

"2 (E – V(R)) . (63)

The asymptotic potential isV(R) = – C6/R6.
In the semiclassical picture, we have the identifica-

tion of a with the WKB amplitude

aWKB(R, E) =
1

Ïk(R, E)
, (64)

and the above forms are equivalent to the WKB wave-
function. The exact solution to the quantum equations
[Eqs. (61) and (62)] give an exact quantum wavefunc-
tion. Here we will use an asymptotic analysis for the
wavefunction at moderately long range.

At long range the amplitude becomes constant, and
very large asE → 0:

a` =
1

Ïk`

= Îl`

2p
. (65)

Therefore, we want to calculate the departure of this
large, nearly independent ofR, amplitude from its
asymptotic limit. We do this byapproximatingthe last
term of Eq. (61) by 1/a3 ≈ k`

2 a . Then Eq. (61) becomes

d2a
dR2 + (k2(R) – k`

2) a = 0 (66)

d2a
dR2 –

2m
"2 V(R)a = 0 (67)

d2a
dR2 = – S2m

"2 C6D 1
R6a . (68)

Equation (68) can be immediately integrated to give

a (R) = a`S1 –
2mC6

20"2R4D (69)

= a`S1–SRB

RD4D (70)

whereRB is defined by Eq. (13). WhenR = 201/4RB =
2.1RB, the amplitudea (R) has only changed by 5 %
from its asymptotic valuea`. WhenR = RB, the correc-
tion term is unity, and the asymptotic approximation
used in setting up the approximate Eq. (66) breaks
down. Therefore, the amplitude expression in Eq. (70)
can only be applied forR >> RB.

Now we can turn our attention to deriving the correc-
tion to the asymptotic phase. This is done by substituting
the above amplitude, Eq. (70), into the phase [Eq. (62)].
The asymptotic phase at some suitable large value of
R = R̀ (a distance well beyond the range of the poten-
tial) is b` = k`(R̀ – As), whereAs is thes-wave scatter-
inglength. The phase function atR is calculated by inte-
grating backwards fromR̀ ,

b (R) = k`(R̀ – As) + ER

R`

1
a (R)2 dR (71)

= k`(R̀ – As) – k` ER`

R

dR

S1 – SRB

RD4D2

≈ k`(R̀ – As) – k` ER`

R
S1 + 2 SRB

RD4DdR

= k`SR – As –
2
3 SRB

RD4
RD . (72)

500



Volume 101, Number 4, July–August 1996
Journal of Research of the National Institute of Standards and Technology

Combining the corrected phase and amplitude
expressions, Eqs. (72) and (70), in Eq. (60), we obtain
the expression given in Eq. (10) in the text. Note that the
normalization stays close to itsasymptoticvalue, in spite
of the fact that the localk(R, E) can be much larger than
k` in that part of the moderately long range region
where uVgu >> E (see Fig. 2). Thus, the semiclassical
local WKB normalization does not apply. Note also that
the node of the wavefunction atRn nearAs for the posi-
tive scattering length case is shifted from its value
projected from the asymptoticAs. This is because the
phase nearAs has not yet reached its asymptotic limiting
value. This shift in the actual node to largerR can
readily be estimated from Eq. (72):

Rn – As –
2
3 SRB

Rn
D4

Rn = 0 (73)

andRn ≈ As implies Rn ≈ AsS1 +
2
3SRB

As
D4D . (74)

9. Appendix B. Reflection Formula

This derivation of the reflection approximation ex-
pression follows Jablonski [48] and the Appendix of Ref.
[49]. We begin by writing the ground and excited state
wavefunctions in energy-normalized phase-amplitude
form

Cg(R, E) = S 2m
p"2D1/2

ag(R, E) sin(bg(R, E)) (75)

Ce(R, Ee) = S 2m
p"2D1/2

ae(R, Ee) sin(be(R, Ee)). (76)

whereEe = E + "DA. The ground state amplitude and
phase are given by Eqs. (70) and (72), whereas the
excited state quantities can be taken to be the standard
WKB ones:

ae(R, Ee) =
1

Ïke(R, Ee)
(77)

be(R, Ee) = ER

Rt

ke(R', Ee) dR' +
1
4

p , (78)

where Rt is the inner turning point of the repulsive
potential. The Franck-Condon factor is

Feg(E, DA) =
2m

p"2 uIeg(E, DA)u2, (79)

where

Ieg(E, DA) = E`

0

agaesinbgsinbedR (80)

≈ 1
2 E

`

0

agae cos(bg – be)dR. (81)

In the last line we have made the standard approximation
of neglecting the rapidly oscillating phase sum term.
The phase difference is expanded in a Taylor series
about a pointRp:

f (R, E) = bg(R, E) – be(R, Ee) (82)

= b0 + b1(R – Rp) +
1
2

b2(R – Rp)2 + . . . , (83)

where

b0 = bg(Rp, E) – be(Rp, Ee) (84)

≈ bg(Rp, E) –
p
4

(85)

b1 =
dbg(R, E)

dR U
Rp

–
dbe(R, Ee)

dR U
Rp

(86)

=
1

a (Rp, E)2 – ke(Rp, E) (87)

≈ k` – ke(Rp, Ee) (88)

b2 =
d2bg(R, E)

dR2 URp –
d2be(R, Ee)

dR2 URp (89)

≈ –
dke(R, Ee)

dR U
Rp

(90)

≈ –
mDC

"2ke(Rp)
. (91)

In the normal semiclassical theory,Rp is taken to be the
Condon point, wherekg = ke so thatb1 = 0. Here we
simply take the point whereb1 vanishes. Since the
excited state potential is so steep with respect to the
effectively flat ground state potential, it is an excellent
approximation to takeRp = Rt = RC to all be equivalent.
Then from Eq. (78),be(Rp, E) = p /4. The expression for
b2 follows from neglecting the ground state contribution
in comparison to the excited state one.
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We thus evaluate

Ieg(E) = ag(RC, E)ae(R, Ee)
1
2 E

`

–`

cos(b0 +
b2

2
x2)dx

= ag(RC, E) S p"2

2mDC
D1/2

cosSbg(RC, E) –
p
2D

= S p"2

2mDC
D1/2

ag(RC, E) sin(bg(RC, E)). (92)

where we have usedE`

–`

cosSb0 6
ub2u
2

x2Ddx

=
2p
ub2u

cosSb0 6
p
4D. (93)

Using Eqs. (75) and (92) in Eq. (79) gives the desired
reflection approximation to the Franck-Condon factor:

Feg(E, DA) =
1

DC
uCg(RC, E)u2. (94)
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